1,103 research outputs found

    Speeding up neighborhood search in local Gaussian process prediction

    Full text link
    Recent implementations of local approximate Gaussian process models have pushed computational boundaries for non-linear, non-parametric prediction problems, particularly when deployed as emulators for computer experiments. Their flavor of spatially independent computation accommodates massive parallelization, meaning that they can handle designs two or more orders of magnitude larger than previously. However, accomplishing that feat can still require massive supercomputing resources. Here we aim to ease that burden. We study how predictive variance is reduced as local designs are built up for prediction. We then observe how the exhaustive and discrete nature of an important search subroutine involved in building such local designs may be overly conservative. Rather, we suggest that searching the space radially, i.e., continuously along rays emanating from the predictive location of interest, is a far thriftier alternative. Our empirical work demonstrates that ray-based search yields predictors with accuracy comparable to exhaustive search, but in a fraction of the time - bringing a supercomputer implementation back onto the desktop.Comment: 24 pages, 5 figures, 4 table

    HBST: A Hamming Distance embedding Binary Search Tree for Visual Place Recognition

    Get PDF
    Reliable and efficient Visual Place Recognition is a major building block of modern SLAM systems. Leveraging on our prior work, in this paper we present a Hamming Distance embedding Binary Search Tree (HBST) approach for binary Descriptor Matching and Image Retrieval. HBST allows for descriptor Search and Insertion in logarithmic time by exploiting particular properties of binary Feature descriptors. We support the idea behind our search structure with a thorough analysis on the exploited descriptor properties and their effects on completeness and complexity of search and insertion. To validate our claims we conducted comparative experiments for HBST and several state-of-the-art methods on a broad range of publicly available datasets. HBST is available as a compact open-source C++ header-only library.Comment: Submitted to IEEE Robotics and Automation Letters (RA-L) 2018 with International Conference on Intelligent Robots and Systems (IROS) 2018 option, 8 pages, 10 figure

    Data Mining and Machine Learning in Astronomy

    Full text link
    We review the current state of data mining and machine learning in astronomy. 'Data Mining' can have a somewhat mixed connotation from the point of view of a researcher in this field. If used correctly, it can be a powerful approach, holding the potential to fully exploit the exponentially increasing amount of available data, promising great scientific advance. However, if misused, it can be little more than the black-box application of complex computing algorithms that may give little physical insight, and provide questionable results. Here, we give an overview of the entire data mining process, from data collection through to the interpretation of results. We cover common machine learning algorithms, such as artificial neural networks and support vector machines, applications from a broad range of astronomy, emphasizing those where data mining techniques directly resulted in improved science, and important current and future directions, including probability density functions, parallel algorithms, petascale computing, and the time domain. We conclude that, so long as one carefully selects an appropriate algorithm, and is guided by the astronomical problem at hand, data mining can be very much the powerful tool, and not the questionable black box.Comment: Published in IJMPD. 61 pages, uses ws-ijmpd.cls. Several extra figures, some minor additions to the tex

    Lightweight Deep Learning Framework to Detect Botnets in IoT Sensor Networks by using Hybrid Self-Organizing Map

    Get PDF
    In recent years, we have witnessed a massive growth of intrusion attacks targeted at the internet of things (IoT) devices. Due to inherent security vulnerabilities, it has become an easy target for hackers to target these devices. Recent studies have been focusing on deploying intrusion detection systems at the edge of the network within these devices to localize threat mitigation to avoid computational expenses. Intrusion detection systems based on machine learning and deep learning algorithm have demonstrated the potential capability to detect zero-day attacks where traditional signature-based detection falls short. The paper aims to propose a lightweight and robust deep learning framework for intrusion detection that has computational potential to be deployed within IoT devices. The research builds upon previous researches showing the demonstrated efficiency of anomaly detection rates of self-organizing map-based intrusion. The paper will contribute to the existing body of knowledge by creating a hybrid self-organizing map (SOM) for the purpose of detecting botnet attacks and analyzing its accuracy compared with a traditional supervised artificial neural network (ANN). The paper also aims to answer questions regarding the computational efficiency of our hybrid self-organizing map by measuring the CPU consumption based on time to train model. The deep learning prototypes will be trained on the NSL-KDD dataset and Detection of IoT botnet Attacks dataset. The study will evaluate the performance of a self-organizing map based k-nearest neighbor prototype with the performance of a supervised artificial neural network based on validation metrics such as confusion matrix, f1, recall, precision, and accuracy score

    Neuromorphic Learning Systems for Supervised and Unsupervised Applications

    Get PDF
    The advancements in high performance computing (HPC) have enabled the large-scale implementation of neuromorphic learning models and pushed the research on computational intelligence into a new era. Those bio-inspired models are constructed on top of unified building blocks, i.e. neurons, and have revealed potentials for learning of complex information. Two major challenges remain in neuromorphic computing. Firstly, sophisticated structuring methods are needed to determine the connectivity of the neurons in order to model various problems accurately. Secondly, the models need to adapt to non-traditional architectures for improved computation speed and energy efficiency. In this thesis, we address these two problems and apply our techniques to different cognitive applications. This thesis first presents the self-structured confabulation network for anomaly detection. Among the machine learning applications, unsupervised detection of the anomalous streams is especially challenging because it requires both detection accuracy and real-time performance. Designing a computing framework that harnesses the growing computing power of the multicore systems while maintaining high sensitivity and specificity to the anomalies is an urgent research need. We present AnRAD (Anomaly Recognition And Detection), a bio-inspired detection framework that performs probabilistic inferences. We leverage the mutual information between the features and develop a self-structuring procedure that learns a succinct confabulation network from the unlabeled data. This network is capable of fast incremental learning, which continuously refines the knowledge base from the data streams. Compared to several existing anomaly detection methods, the proposed approach provides competitive detection accuracy as well as the insight to reason the decision making. Furthermore, we exploit the massive parallel structure of the AnRAD framework. Our implementation of the recall algorithms on the graphic processing unit (GPU) and the Xeon Phi co-processor both obtain substantial speedups over the sequential implementation on general-purpose microprocessor (GPP). The implementation enables real-time service to concurrent data streams with diversified contexts, and can be applied to large problems with multiple local patterns. Experimental results demonstrate high computing performance and memory efficiency. For vehicle abnormal behavior detection, the framework is able to monitor up to 16000 vehicles and their interactions in real-time with a single commodity co-processor, and uses less than 0.2ms for each testing subject. While adapting our streaming anomaly detection model to mobile devices or unmanned systems, the key challenge is to deliver required performance under the stringent power constraint. To address the paradox between performance and power consumption, brain-inspired hardware, such as the IBM Neurosynaptic System, has been developed to enable low power implementation of neural models. As a follow-up to the AnRAD framework, we proposed to port the detection network to the TrueNorth architecture. Implementing inference based anomaly detection on a neurosynaptic processor is not straightforward due to hardware limitations. A design flow and the supporting component library are developed to flexibly map the learned detection networks to the neurosynaptic cores. Instead of the popular rate code, burst code is adopted in the design, which represents numerical value using the phase of a burst of spike trains. This does not only reduce the hardware complexity, but also increases the result\u27s accuracy. A Corelet library, NeoInfer-TN, is implemented for basic operations in burst code and two-phase pipelines are constructed based on the library components. The design can be configured for different tradeoffs between detection accuracy, hardware resource consumptions, throughput and energy. We evaluate the system using network intrusion detection data streams. The results show higher detection rate than some conventional approaches and real-time performance, with only 50mW power consumption. Overall, it achieves 10^8 operations per Joule. In addition to the modeling and implementation of unsupervised anomaly detection, we also investigate a supervised learning model based on neural networks and deep fragment embedding and apply it to text-image retrieval. The study aims at bridging the gap between image and natural language. It continues to improve the bidirectional retrieval performance across the modalities. Unlike existing works that target at single sentence densely describing the image objects, we elevate the topic to associating deep image representations with noisy texts that are only loosely correlated. Based on text-image fragment embedding, our model employs a sequential configuration, connects two embedding stages together. The first stage learns the relevancy of the text fragments, and the second stage uses the filtered output from the first one to improve the matching results. The model also integrates multiple convolutional neural networks (CNN) to construct the image fragments, in which rich context information such as human faces can be extracted to increase the alignment accuracy. The proposed method is evaluated with both synthetic dataset and real-world dataset collected from picture news website. The results show up to 50% ranking performance improvement over the comparison models
    • …
    corecore