748 research outputs found

    Theory and algorithms for swept manifold intersections

    Get PDF
    Recent developments in such fields as computer aided geometric design, geometric modeling, and computational topology have generated a spate of interest towards geometric objects called swept volumes. Besides their great applicability in various practical areas, the mere geometry and topology of these entities make them a perfect testbed for novel approaches aimed at analyzing and representing geometric objects. The structure of swept volumes reveals that it is also important to focus on a little simpler, although a very similar type of objects - swept manifolds. In particular, effective computability of swept manifold intersections is of major concern. The main goal of this dissertation is to conduct a study of swept manifolds and, based on the findings, develop methods for computing swept surface intersections. The twofold nature of this goal prompted a division of the work into two distinct parts. At first, a theoretical analysis of swept manifolds is performed, providing a better insight into the topological structure of swept manifolds and unveiling several important properties. In the course of the investigation, several subclasses of swept manifolds are introduced; in particular, attention is focused on regular and critical swept manifolds. Because of the high applicability, additional effort is put into analysis of two-dimensional swept manifolds - swept surfaces. Some of the valuable properties exhibited by such surfaces are generalized to higher dimensions by introducing yet another class of swept manifolds - recursive swept manifolds. In the second part of this work, algorithms for finding swept surface intersections are developed. The need for such algorithms is necessitated by a specific structure of swept surfaces that precludes direct employment of existing intersection methods. The new algorithms are designed by utilizing the underlying ideas of existing intersection techniques and making necessary technical modifications. Such modifications are achieved by employing properties of swept surfaces obtained in the course of the theoretical study. The intersection problems is also considered from a little different prospective. A novel, homology based approach to local characterization of intersections of submanifolds and s-subvarieties of a Euclidean space is presented. It provides a method for distinguishing between transverse and tangential intersection points and determining, in some cases, whether the intersection point belongs to a boundary. At the end, several possible applications of the obtained results are described, including virtual sculpting and modeling of heterogeneous materials

    Accurate geometry reconstruction of vascular structures using implicit splines

    Get PDF
    3-D visualization of blood vessel from standard medical datasets (e.g. CT or MRI) play an important role in many clinical situations, including the diagnosis of vessel stenosis, virtual angioscopy, vascular surgery planning and computer aided vascular surgery. However, unlike other human organs, the vasculature system is a very complex network of vessel, which makes it a very challenging task to perform its 3-D visualization. Conventional techniques of medical volume data visualization are in general not well-suited for the above-mentioned tasks. This problem can be solved by reconstructing vascular geometry. Although various methods have been proposed for reconstructing vascular structures, most of these approaches are model-based, and are usually too ideal to correctly represent the actual variation presented by the cross-sections of a vascular structure. In addition, the underlying shape is usually expressed as polygonal meshes or in parametric forms, which is very inconvenient for implementing ramification of branching. As a result, the reconstructed geometries are not suitable for computer aided diagnosis and computer guided minimally invasive vascular surgery. In this research, we develop a set of techniques associated with the geometry reconstruction of vasculatures, including segmentation, modelling, reconstruction, exploration and rendering of vascular structures. The reconstructed geometry can not only help to greatly enhance the visual quality of 3-D vascular structures, but also provide an actual geometric representation of vasculatures, which can provide various benefits. The key findings of this research are as follows: 1. A localized hybrid level-set method of segmentation has been developed to extract the vascular structures from 3-D medical datasets. 2. A skeleton-based implicit modelling technique has been proposed and applied to the reconstruction of vasculatures, which can achieve an accurate geometric reconstruction of the vascular structures as implicit surfaces in an analytical form. 3. An accelerating technique using modern GPU (Graphics Processing Unit) is devised and applied to rendering the implicitly represented vasculatures. 4. The implicitly modelled vasculature is investigated for the application of virtual angioscopy

    Integration of continuous-time dynamics in a spiking neural network simulator

    Full text link
    Contemporary modeling approaches to the dynamics of neural networks consider two main classes of models: biologically grounded spiking neurons and functionally inspired rate-based units. The unified simulation framework presented here supports the combination of the two for multi-scale modeling approaches, the quantitative validation of mean-field approaches by spiking network simulations, and an increase in reliability by usage of the same simulation code and the same network model specifications for both model classes. While most efficient spiking simulations rely on the communication of discrete events, rate models require time-continuous interactions between neurons. Exploiting the conceptual similarity to the inclusion of gap junctions in spiking network simulations, we arrive at a reference implementation of instantaneous and delayed interactions between rate-based models in a spiking network simulator. The separation of rate dynamics from the general connection and communication infrastructure ensures flexibility of the framework. We further demonstrate the broad applicability of the framework by considering various examples from the literature ranging from random networks to neural field models. The study provides the prerequisite for interactions between rate-based and spiking models in a joint simulation

    Anyonic entanglement renormalization

    Get PDF
    We introduce a family of variational ansatz states for chains of anyons which optimally exploits the structure of the anyonic Hilbert space. This ansatz is the natural analog of the multi-scale entanglement renormalization ansatz for spin chains. In particular, it has the same interpretation as a coarse-graining procedure and is expected to accurately describe critical systems with algebraically decaying correlations. We numerically investigate the validity of this ansatz using the anyonic golden chain and its relatives as a testbed. This demonstrates the power of entanglement renormalization in a setting with non-abelian exchange statistics, extending previous work on qudits, bosons and fermions in two dimensions.Comment: 19 pages, 10 figures, v2: extended, updated to match published versio

    On the isotopic meshing of an algebraic implicit surface

    Get PDF
    International audienceWe present a new and complete algorithm for computing the topology of an algebraic surface given by a squarefree polynomial in Q[X, Y, Z]. Our algorithm involves only subresultant computations and entirely relies on rational manipulation, which makes it direct to implement. We extend the work in [15], on the topology of non-reduced algebraic space curves, and apply it to the polar curve or apparent contour of the surface S. We exploit simple algebraic criterion to certify the pseudo-genericity and genericity position of the surface. This gives us rational parametrizations of the components of the polar curve, which are used to lift the topology of the projection of the polar curve. We deduce the connection of the two-dimensional components above the cell defined by the projection of the polar curve. A complexity analysis of the algorithm is provided leading to a bound in OB (d15 Ď„ ) for the complexity of the computation of the topology of an implicit algebraic surface defined by integer coefficients polynomial of degree d and coefficients size Ď„ . Examples illustrate the implementation in Mathemagix of this first complete code for certified topology of algebraic surfaces

    A Survey of Surface Reconstruction from Point Clouds

    Get PDF
    International audienceThe area of surface reconstruction has seen substantial progress in the past two decades. The traditional problem addressed by surface reconstruction is to recover the digital representation of a physical shape that has been scanned, where the scanned data contains a wide variety of defects. While much of the earlier work has been focused on reconstructing a piece-wise smooth representation of the original shape, recent work has taken on more specialized priors to address significantly challenging data imperfections, where the reconstruction can take on different representations – not necessarily the explicit geometry. We survey the field of surface reconstruction, and provide a categorization with respect to priors, data imperfections, and reconstruction output. By considering a holistic view of surface reconstruction, we show a detailed characterization of the field, highlight similarities between diverse reconstruction techniques, and provide directions for future work in surface reconstruction

    On Triangular Splines:CAD and Quadrature

    Get PDF
    • …
    corecore