993 research outputs found

    A digital shadow cloud-based application to enhance quality control in manufacturing

    Get PDF
    In Industry 4.0 era, rapid changes to the global landscape of manufacturing are transforming industrial plants in increasingly more complex digital systems. One of the most impactful innovations generated in this context is the "Digital Twin", a digital copy of a physical asset, which is used to perform simulations, health predictions and life cycle management through the use of a synchronized data flow in the manufacturing plant. In this paper, an innovative approach is proposed in order to contribute to the current collection of applications of Digital Twin in manufacturing: a Digital Shadow cloud-based application to enhance quality control in the manufacturing process. In particular, the proposal comprises a Digital Shadow updated on high performance computing cloud infrastructure in order to recompute the performance prediction adopting a variation of the computer-aided engineering model shaped like the actual manufactured part. Thus, this methodology could make possible the qualification of even not compliant parts, and so shift the focus from the compliance to tolerance requirements to the compliance to usage requirements. The process is demonstrated adopting two examples: the structural assessment of the geometry of a shaft and the one of a simplified turbine blade. Moreover, the paper presents a discussion about the implications of the use of such a technology in the manufacturing context in terms of real-time implementation in a manufacturing line and lifecycle management. Copyright (C) 2020 The Authors

    12th EASN International Conference on "Innovation in Aviation & Space for opening New Horizons"

    Get PDF
    Epoxy resins show a combination of thermal stability, good mechanical performance, and durability, which make these materials suitable for many applications in the Aerospace industry. Different types of curing agents can be utilized for curing epoxy systems. The use of aliphatic amines as curing agent is preferable over the toxic aromatic ones, though their incorporation increases the flammability of the resin. Recently, we have developed different hybrid strategies, where the sol-gel technique has been exploited in combination with two DOPO-based flame retardants and other synergists or the use of humic acid and ammonium polyphosphate to achieve non-dripping V-0 classification in UL 94 vertical flame spread tests, with low phosphorous loadings (e.g., 1-2 wt%). These strategies improved the flame retardancy of the epoxy matrix, without any detrimental impact on the mechanical and thermal properties of the composites. Finally, the formation of a hybrid silica-epoxy network accounted for the establishment of tailored interphases, due to a better dispersion of more polar additives in the hydrophobic resin

    Re-manufacturing networks for tertiary architectures

    Get PDF
    This book deals with re-manufacturing, recondition, reuse and repurpose considered as winning strategies for boosting regenerative circular economy in the building sector. It presents many of the outcomes of the research Re-NetTA (Re-manufacturing Networks for Tertiary Architectures). New organisational models and tools for re-manufacturing and re-using short life components coming from tertiary buildings renewal, funded in Italy by Fondazione Cariplo for the period 2019-2021. The field of interest of the book is the building sector, focusing on various categories of tertiary buildings, characterized by short term cycles of use. The book investigates the most promising strategies and organizational models to maintain over time the value of the environmental and economic resources integrated into manufactured products, once they have been removed from buildings, by extending their useful life and their usability with the lower possible consumption of other materials and energy and with the maximum containment of emissions into the environment. The text is articulated into three sections. Part I BACKGROUND introduces the current theoretical background and identifies key strategies about circular economy and re-manufacturing processes within the building sector, focusing on tertiary architectures. It is divided into three chapters. Part II PROMISING MODELS outlines, according to a proposed framework, a set of promising circular organizational models to facilitate re-manufacturing practices and their application to the different categories of the tertiary sectors: exhibition, office and retail. This part also reports the results of active dialogues and roundtables with several categories of operators, adopting a stakeholder perspective. Part III INSIGHTS provides some insights on the issue of re-manufacturing, analyzed from different perspectives with the aim of outlining a comprehensive overview of challenges and opportunities for the application of virtuous circular processes within building sector. Part III is organized in four key topics: A) Design for Re-manufacturing; B) Digital Transformation; C) Environmental Sustainability; D) Stakeholder Management, Regulations & Policies

    Energy management and guidelines to digitalisation of integrated natural gas distribution systems equipped with expander technology

    Get PDF
    In a swirling dynamic interaction, digital innovation, environment and anthropological evolution are swiftly shaping the smart grid scenario. Integration and flexibility are the keywords in this emergent picture characterised by a low carbon footprint. Digitalisation, within the natural limits imposed by the thermodynamics, seems to offer excellent opportunities for these purposes. Of course, here starts a new challenge: how digital technologies should be employed to achieve these objectives? How would we ensure a digital retrofit does not lead to a carbon emission increase? In author opinion, as long as it remains a generalised question, none answer exists: the need to contextualise the issue emerges from the variety of the characteristics of the energy systems and from their interactions with external processes. To address these points, in the first part of this research, the author presented a collection of his research contributions to the topic related to the energy management in natural gas pressure reduction station equipped with turbo expander technology. Furthermore, starting from the state of the art and the author's previous research contributions, the guidelines for the digital retrofit for a specific kind of distributed energy system, were outlined. Finally, a possible configuration of the ideal ICT architecture is extracted. This aims to achieve a higher level of coordination involving, natural gas distribution and transportation, local energy production, thermal user integration and electric vehicles charging. Finally, the barriers and the risks of a digitalisation process are critically analysed outlining in this way future research needs

    Optimisation of laser welding of deep drawing steel for automotive applications by Machine Learning: A comparison of different techniques

    Get PDF
    Laser welding is particularly relevant in the industry thanks to its simplicity, flexibility and final quality. The industry 4.0 and sustainable manufacturing framework gives massive attention to in situ and non-destructive inspection methods to predict laser weld final quality. Literature often resorts to supervised Machine Learning approaches. However, selecting the ApTest method is non-trivial and often decision making relies on diverse and unclearly defined criteria. This work addresses this task by proposing a statistical comparison method based on nonparametric tests. The method is applied to the most relevant supervised Machine Learning approaches exploited in literature to predict laser weld quality, specifically, considering the optimisation of a new production line, hence focussing on supervised Machine Learning methods that do not require massive data set, that is, Generalized Linear Model (GLM), Gaussian Process Regression, Support Vector Machine, Classification and Regression Tree, and Genetic Algorithms. The statistical comparison is carried out to select the best-performing model, which is then exploited to optimise the production process. Additionally, an automatic process to optimise Machine Learning models and process parameters is resorted to, basing on Bayesian approaches, to reduce operator effect. This work provides quality and process engineers with a simple framework to compare Machine Learning approaches performances and select the most suitable process modelling technique
    • …
    corecore