7,987 research outputs found

    Partout: A Distributed Engine for Efficient RDF Processing

    Full text link
    The increasing interest in Semantic Web technologies has led not only to a rapid growth of semantic data on the Web but also to an increasing number of backend applications with already more than a trillion triples in some cases. Confronted with such huge amounts of data and the future growth, existing state-of-the-art systems for storing RDF and processing SPARQL queries are no longer sufficient. In this paper, we introduce Partout, a distributed engine for efficient RDF processing in a cluster of machines. We propose an effective approach for fragmenting RDF data sets based on a query log, allocating the fragments to nodes in a cluster, and finding the optimal configuration. Partout can efficiently handle updates and its query optimizer produces efficient query execution plans for ad-hoc SPARQL queries. Our experiments show the superiority of our approach to state-of-the-art approaches for partitioning and distributed SPARQL query processing

    Inference Optimization using Relational Algebra

    Get PDF
    Exact inference procedures in Bayesian networks can be expressed using relational algebra; this provides a common ground for optimizations from the AI and database communities. Specifically, the ability to accomodate sparse representations of probability distributions opens up the way to optimize for their cardinality instead of the dimensionality; we apply this in a sensor data model.\u

    ï»żAn Answer Explanation Model for Probabilistic Database Queries

    Get PDF
    Following the availability of huge amounts of uncertain data, coming from diverse ranges of applications such as sensors, machine learning or mining approaches, information extraction and integration, etc. in recent years, we have seen a revival of interests in probabilistic databases. Queries over these databases result in probabilistic answers. As the process of arriving at these answers is based on the underlying stored uncertain data, we argue that from the standpoint of an end user, it is helpful for such a system to give an explanation on how it arrives at an answer and on which uncertainty assumptions the derived answer is based. In this way, the user with his/her own knowledge can decide how much confidence to place in this probabilistic answer. \ud The aim of this paper is to design such an answer explanation model for probabilistic database queries. We report our design principles and show the methods to compute the answer explanations. One of the main contributions of our model is that it fills the gap between giving only the answer probability, and giving the full derivation. Furthermore, we show how to balance verifiability and influence of explanation components through the concept of verifiable views. The behavior of the model and its computational efficiency are demonstrated through an extensive performance study

    The Odyssey Approach for Optimizing Federated SPARQL Queries

    Full text link
    Answering queries over a federation of SPARQL endpoints requires combining data from more than one data source. Optimizing queries in such scenarios is particularly challenging not only because of (i) the large variety of possible query execution plans that correctly answer the query but also because (ii) there is only limited access to statistics about schema and instance data of remote sources. To overcome these challenges, most federated query engines rely on heuristics to reduce the space of possible query execution plans or on dynamic programming strategies to produce optimal plans. Nevertheless, these plans may still exhibit a high number of intermediate results or high execution times because of heuristics and inaccurate cost estimations. In this paper, we present Odyssey, an approach that uses statistics that allow for a more accurate cost estimation for federated queries and therefore enables Odyssey to produce better query execution plans. Our experimental results show that Odyssey produces query execution plans that are better in terms of data transfer and execution time than state-of-the-art optimizers. Our experiments using the FedBench benchmark show execution time gains of at least 25 times on average.Comment: 16 pages, 10 figure

    Apache Calcite: A Foundational Framework for Optimized Query Processing Over Heterogeneous Data Sources

    Get PDF
    Apache Calcite is a foundational software framework that provides query processing, optimization, and query language support to many popular open-source data processing systems such as Apache Hive, Apache Storm, Apache Flink, Druid, and MapD. Calcite's architecture consists of a modular and extensible query optimizer with hundreds of built-in optimization rules, a query processor capable of processing a variety of query languages, an adapter architecture designed for extensibility, and support for heterogeneous data models and stores (relational, semi-structured, streaming, and geospatial). This flexible, embeddable, and extensible architecture is what makes Calcite an attractive choice for adoption in big-data frameworks. It is an active project that continues to introduce support for the new types of data sources, query languages, and approaches to query processing and optimization.Comment: SIGMOD'1
    • 

    corecore