5,749 research outputs found

    Exploiting Social and Mobility Patterns for Friendship Prediction in Location-Based Social Networks

    Get PDF
    International audienceLink prediction is a " hot topic " in network analysis and has been largely used for friendship recommendation in social networks. With the increased use of location-based services, it is possible to improve the accuracy of link prediction methods by using the mobility of users. The majority of the link prediction methods focus on the importance of location for their visitors, disregarding the strength of relationships existing between these visitors. We, therefore, propose three new methods for friendship prediction by combining, efficiently, social and mobility patterns of users in location-based social networks (LBSNs). Experiments conducted on real-world datasets demonstrate that our proposals achieve a competitive performance with methods from the literature and, in most of the cases, outperform them. Moreover, our proposals use less computational resources by reducing considerably the number of irrelevant predictions, making the link prediction task more efficient and applicable for real world applications

    A Survey of Location Prediction on Twitter

    Full text link
    Locations, e.g., countries, states, cities, and point-of-interests, are central to news, emergency events, and people's daily lives. Automatic identification of locations associated with or mentioned in documents has been explored for decades. As one of the most popular online social network platforms, Twitter has attracted a large number of users who send millions of tweets on daily basis. Due to the world-wide coverage of its users and real-time freshness of tweets, location prediction on Twitter has gained significant attention in recent years. Research efforts are spent on dealing with new challenges and opportunities brought by the noisy, short, and context-rich nature of tweets. In this survey, we aim at offering an overall picture of location prediction on Twitter. Specifically, we concentrate on the prediction of user home locations, tweet locations, and mentioned locations. We first define the three tasks and review the evaluation metrics. By summarizing Twitter network, tweet content, and tweet context as potential inputs, we then structurally highlight how the problems depend on these inputs. Each dependency is illustrated by a comprehensive review of the corresponding strategies adopted in state-of-the-art approaches. In addition, we also briefly review two related problems, i.e., semantic location prediction and point-of-interest recommendation. Finally, we list future research directions.Comment: Accepted to TKDE. 30 pages, 1 figur

    Location Prediction: Communities Speak Louder than Friends

    Get PDF
    Humans are social animals, they interact with different communities of friends to conduct different activities. The literature shows that human mobility is constrained by their social relations. In this paper, we investigate the social impact of a person's communities on his mobility, instead of all friends from his online social networks. This study can be particularly useful, as certain social behaviors are influenced by specific communities but not all friends. To achieve our goal, we first develop a measure to characterize a person's social diversity, which we term `community entropy'. Through analysis of two real-life datasets, we demonstrate that a person's mobility is influenced only by a small fraction of his communities and the influence depends on the social contexts of the communities. We then exploit machine learning techniques to predict users' future movement based on their communities' information. Extensive experiments demonstrate the prediction's effectiveness.Comment: ACM Conference on Online Social Networks 2015, COSN 201

    Language in Our Time: An Empirical Analysis of Hashtags

    Get PDF
    Hashtags in online social networks have gained tremendous popularity during the past five years. The resulting large quantity of data has provided a new lens into modern society. Previously, researchers mainly rely on data collected from Twitter to study either a certain type of hashtags or a certain property of hashtags. In this paper, we perform the first large-scale empirical analysis of hashtags shared on Instagram, the major platform for hashtag-sharing. We study hashtags from three different dimensions including the temporal-spatial dimension, the semantic dimension, and the social dimension. Extensive experiments performed on three large-scale datasets with more than 7 million hashtags in total provide a series of interesting observations. First, we show that the temporal patterns of hashtags can be categorized into four different clusters, and people tend to share fewer hashtags at certain places and more hashtags at others. Second, we observe that a non-negligible proportion of hashtags exhibit large semantic displacement. We demonstrate hashtags that are more uniformly shared among users, as quantified by the proposed hashtag entropy, are less prone to semantic displacement. In the end, we propose a bipartite graph embedding model to summarize users' hashtag profiles, and rely on these profiles to perform friendship prediction. Evaluation results show that our approach achieves an effective prediction with AUC (area under the ROC curve) above 0.8 which demonstrates the strong social signals possessed in hashtags.Comment: WWW 201
    • …
    corecore