565 research outputs found

    Large scale homophily analysis in twitter using a twixonomy

    Get PDF
    In this paper we perform a large-scale homophily analysis on Twitter using a hierarchical representation of users' interests which we call a Twixonomy. In order to build a population, community, or single-user Twixonomy we first associate "topical" friends in users' friendship lists (i.e. friends representing an interest rather than a social relation between peers) with Wikipedia categories. A wordsense disambiguation algorithm is used to select the appropriate wikipage for each topical friend. Starting from the set of wikipages representing "primitive" interests, we extract all paths connecting these pages with topmost Wikipedia category nodes, and we then prune the resulting graph G efficiently so as to induce a direct acyclic graph. This graph is the Twixonomy. Then, to analyze homophily, we compare different methods to detect communities in a peer friends Twitter network, and then for each community we compute the degree of homophily on the basis of a measure of pairwise semantic similarity. We show that the Twixonomy provides a means for describing users' interests in a compact and readable way and allows for a fine-grained homophily analysis. Furthermore, we show that midlow level categories in the Twixonomy represent the best balance between informativeness and compactness of the representation

    A SYSTEMATIC REVIEW OF COMPUTATIONAL METHODS IN AND RESEARCH TAXONOMY OF HOMOPHILY IN INFORMATION SYSTEMS

    Get PDF
    Homophily is both a principle for social group formation with like-minded people as well as a mechanism for social interactions. Recent years have seen a growing body of management research on homophily particularly on large-scale social media and digital platforms. However, the predominant traditional qualitative and quantitative methods employed face validity issues and/or are not well-suited for big social data. There are scant guidelines for applying computational methods to specific research domains concerning descriptive patterns, explanatory mechanisms, or predictive indicators of homophily. To fill this research gap, this paper offers a structured review of the emerging literature on computational social science approaches to homophily with a particular emphasis on their relevance, appropriateness, and importance to information systems research. We derive a research taxonomy for homophily and offer methodological reflections and recommendations to help inform future research

    Three Essays on Trust Mining in Online Social Networks

    Get PDF
    This dissertation research consists of three essays on studying trust in online social networks. Trust plays a critical role in online social relationships, because of the high levels of risk and uncertainty involved. Guided by relevant social science and computational graph theories, I develop conceptual and predictive models to gain insights into trusting behaviors in online social relationships. In the first essay, I propose a conceptual model of trust formation in online social networks. This is the first study that integrates the existing graph-based view of trust formation in social networks with socio-psychological theories of trust to provide a richer understanding of trusting behaviors in online social networks. I introduce new behavioral antecedents of trusting behaviors and redefine and integrate existing graph-based concepts to develop the proposed conceptual model. The empirical findings indicate that both socio-psychological and graph-based trust-related factors should be considered in studying trust formation in online social networks. In the second essay, I propose a theory-based predictive model to predict trust and distrust links in online social networks. Previous trust prediction models used limited network structural data to predict future trust/distrust relationships, ignoring the underlying behavioral trust-inducing factors. I identify a comprehensive set of behavioral and structural predictors of trust/distrust links based on related theories, and then build multiple supervised classification models to predict trust/distrust links in online social networks. The empirical results confirm the superior fit and predictive performance of the proposed model over the baselines. In the third essay, I propose a lexicon-based text mining model to mine trust related user-generated content (UGC). This is the first theory-based text mining model to examine important factors in online trusting decisions from UGC. I build domain-specific trustworthiness lexicons for online social networks based on related behavioral foundations and text mining techniques. Next, I propose a lexicon-based text mining model that automatically extracts and classifies trustworthiness characteristics from trust reviews. The empirical evaluations show the superior performance of the proposed text mining system over the baselines

    Latent Space Model for Multi-Modal Social Data

    Full text link
    With the emergence of social networking services, researchers enjoy the increasing availability of large-scale heterogenous datasets capturing online user interactions and behaviors. Traditional analysis of techno-social systems data has focused mainly on describing either the dynamics of social interactions, or the attributes and behaviors of the users. However, overwhelming empirical evidence suggests that the two dimensions affect one another, and therefore they should be jointly modeled and analyzed in a multi-modal framework. The benefits of such an approach include the ability to build better predictive models, leveraging social network information as well as user behavioral signals. To this purpose, here we propose the Constrained Latent Space Model (CLSM), a generalized framework that combines Mixed Membership Stochastic Blockmodels (MMSB) and Latent Dirichlet Allocation (LDA) incorporating a constraint that forces the latent space to concurrently describe the multiple data modalities. We derive an efficient inference algorithm based on Variational Expectation Maximization that has a computational cost linear in the size of the network, thus making it feasible to analyze massive social datasets. We validate the proposed framework on two problems: prediction of social interactions from user attributes and behaviors, and behavior prediction exploiting network information. We perform experiments with a variety of multi-modal social systems, spanning location-based social networks (Gowalla), social media services (Instagram, Orkut), e-commerce and review sites (Amazon, Ciao), and finally citation networks (Cora). The results indicate significant improvement in prediction accuracy over state of the art methods, and demonstrate the flexibility of the proposed approach for addressing a variety of different learning problems commonly occurring with multi-modal social data.Comment: 12 pages, 7 figures, 2 table
    • …
    corecore