613 research outputs found

    Improving the Representation and Conversion of Mathematical Formulae by Considering their Textual Context

    Full text link
    Mathematical formulae represent complex semantic information in a concise form. Especially in Science, Technology, Engineering, and Mathematics, mathematical formulae are crucial to communicate information, e.g., in scientific papers, and to perform computations using computer algebra systems. Enabling computers to access the information encoded in mathematical formulae requires machine-readable formats that can represent both the presentation and content, i.e., the semantics, of formulae. Exchanging such information between systems additionally requires conversion methods for mathematical representation formats. We analyze how the semantic enrichment of formulae improves the format conversion process and show that considering the textual context of formulae reduces the error rate of such conversions. Our main contributions are: (1) providing an openly available benchmark dataset for the mathematical format conversion task consisting of a newly created test collection, an extensive, manually curated gold standard and task-specific evaluation metrics; (2) performing a quantitative evaluation of state-of-the-art tools for mathematical format conversions; (3) presenting a new approach that considers the textual context of formulae to reduce the error rate for mathematical format conversions. Our benchmark dataset facilitates future research on mathematical format conversions as well as research on many problems in mathematical information retrieval. Because we annotated and linked all components of formulae, e.g., identifiers, operators and other entities, to Wikidata entries, the gold standard can, for instance, be used to train methods for formula concept discovery and recognition. Such methods can then be applied to improve mathematical information retrieval systems, e.g., for semantic formula search, recommendation of mathematical content, or detection of mathematical plagiarism.Comment: 10 pages, 4 figure

    Design and Development of an Extensible and Configurable Framework for Conversational Search Experiments

    Get PDF
    The Conversational Search (CS) paradigm allows for an intuitive interaction between the user and the system through natural language sentences and it is increasingly being adopted in various scenarios. However, its widespread experimentation has led to the birth of a multitude of CS systems with custom implementations and variants of Information Retrieval (IR) models. This exacerbates the reproducibility crisis already observed in several research areas, including IR. To address this issue, we propose DECAF: a modular and extensible Conversational Search framework designed for fast prototyping and development of conversational agents. Our framework integrates all the components that characterize a modern CS system and allows for the seamless integration of Machine Learning (ML) and Large Language Models (LLMs)-based techniques. Furthermore, thanks to its uniform interface, DECAF allows for experiments characterized by a high degree of reproducibility. DECAF contains several state-of-the-art components including query rewriting, search functions under Bag-of-Words (BoW) and dense paradigms, and re-ranking functions. Our framework is tested on two well-known conversational collections: TREC CAsT 2019 and 2020 and the results can be used by future practitioners as baselines. Our contributions include the identification of a series of state-of-the-art components for the CS task and the definition of a modular framework for its implementation.The Conversational Search (CS) paradigm allows for an intuitive interaction between the user and the system through natural language sentences and it is increasingly being adopted in various scenarios. However, its widespread experimentation has led to the birth of a multitude of CS systems with custom implementations and variants of Information Retrieval (IR) models. This exacerbates the reproducibility crisis already observed in several research areas, including IR. To address this issue, we propose DECAF: a modular and extensible Conversational Search framework designed for fast prototyping and development of conversational agents. Our framework integrates all the components that characterize a modern CS system and allows for the seamless integration of Machine Learning (ML) and Large Language Models (LLMs)-based techniques. Furthermore, thanks to its uniform interface, DECAF allows for experiments characterized by a high degree of reproducibility. DECAF contains several state-of-the-art components including query rewriting, search functions under Bag-of-Words (BoW) and dense paradigms, and re-ranking functions. Our framework is tested on two well-known conversational collections: TREC CAsT 2019 and 2020 and the results can be used by future practitioners as baselines. Our contributions include the identification of a series of state-of-the-art components for the CS task and the definition of a modular framework for its implementation

    Explainable methods for knowledge graph refinement and exploration via symbolic reasoning

    Get PDF
    Knowledge Graphs (KGs) have applications in many domains such as Finance, Manufacturing, and Healthcare. While recent efforts have created large KGs, their content is far from complete and sometimes includes invalid statements. Therefore, it is crucial to refine the constructed KGs to enhance their coverage and accuracy via KG completion and KG validation. It is also vital to provide human-comprehensible explanations for such refinements, so that humans have trust in the KG quality. Enabling KG exploration, by search and browsing, is also essential for users to understand the KG value and limitations towards down-stream applications. However, the large size of KGs makes KG exploration very challenging. While the type taxonomy of KGs is a useful asset along these lines, it remains insufficient for deep exploration. In this dissertation we tackle the aforementioned challenges of KG refinement and KG exploration by combining logical reasoning over the KG with other techniques such as KG embedding models and text mining. Through such combination, we introduce methods that provide human-understandable output. Concretely, we introduce methods to tackle KG incompleteness by learning exception-aware rules over the existing KG. Learned rules are then used in inferring missing links in the KG accurately. Furthermore, we propose a framework for constructing human-comprehensible explanations for candidate facts from both KG and text. Extracted explanations are used to insure the validity of KG facts. Finally, to facilitate KG exploration, we introduce a method that combines KG embeddings with rule mining to compute informative entity clusters with explanations.Wissensgraphen haben viele Anwendungen in verschiedenen Bereichen, beispielsweise im Finanz- und Gesundheitswesen. Wissensgraphen sind jedoch unvollständig und enthalten auch ungültige Daten. Hohe Abdeckung und Korrektheit erfordern neue Methoden zur Wissensgraph-Erweiterung und Wissensgraph-Validierung. Beide Aufgaben zusammen werden als Wissensgraph-Verfeinerung bezeichnet. Ein wichtiger Aspekt dabei ist die Erklärbarkeit und Verständlichkeit von Wissensgraphinhalten für Nutzer. In Anwendungen ist darüber hinaus die nutzerseitige Exploration von Wissensgraphen von besonderer Bedeutung. Suchen und Navigieren im Graph hilft dem Anwender, die Wissensinhalte und ihre Limitationen besser zu verstehen. Aufgrund der riesigen Menge an vorhandenen Entitäten und Fakten ist die Wissensgraphen-Exploration eine Herausforderung. Taxonomische Typsystem helfen dabei, sind jedoch für tiefergehende Exploration nicht ausreichend. Diese Dissertation adressiert die Herausforderungen der Wissensgraph-Verfeinerung und der Wissensgraph-Exploration durch algorithmische Inferenz über dem Wissensgraph. Sie erweitert logisches Schlussfolgern und kombiniert es mit anderen Methoden, insbesondere mit neuronalen Wissensgraph-Einbettungen und mit Text-Mining. Diese neuen Methoden liefern Ausgaben mit Erklärungen für Nutzer. Die Dissertation umfasst folgende Beiträge: Insbesondere leistet die Dissertation folgende Beiträge: • Zur Wissensgraph-Erweiterung präsentieren wir ExRuL, eine Methode zur Revision von Horn-Regeln durch Hinzufügen von Ausnahmebedingungen zum Rumpf der Regeln. Die erweiterten Regeln können neue Fakten inferieren und somit Lücken im Wissensgraphen schließen. Experimente mit großen Wissensgraphen zeigen, dass diese Methode Fehler in abgeleiteten Fakten erheblich reduziert und nutzerfreundliche Erklärungen liefert. • Mit RuLES stellen wir eine Methode zum Lernen von Regeln vor, die auf probabilistischen Repräsentationen für fehlende Fakten basiert. Das Verfahren erweitert iterativ die aus einem Wissensgraphen induzierten Regeln, indem es neuronale Wissensgraph-Einbettungen mit Informationen aus Textkorpora kombiniert. Bei der Regelgenerierung werden neue Metriken für die Regelqualität verwendet. Experimente zeigen, dass RuLES die Qualität der gelernten Regeln und ihrer Vorhersagen erheblich verbessert. • Zur Unterstützung der Wissensgraph-Validierung wird ExFaKT vorgestellt, ein Framework zur Konstruktion von Erklärungen für Faktkandidaten. Die Methode transformiert Kandidaten mit Hilfe von Regeln in eine Menge von Aussagen, die leichter zu finden und zu validieren oder widerlegen sind. Die Ausgabe von ExFaKT ist eine Menge semantischer Evidenzen für Faktkandidaten, die aus Textkorpora und dem Wissensgraph extrahiert werden. Experimente zeigen, dass die Transformationen die Ausbeute und Qualität der entdeckten Erklärungen deutlich verbessert. Die generierten unterstützen Erklärungen unterstütze sowohl die manuelle Wissensgraph- Validierung durch Kuratoren als auch die automatische Validierung. • Zur Unterstützung der Wissensgraph-Exploration wird ExCut vorgestellt, eine Methode zur Erzeugung von informativen Entitäts-Clustern mit Erklärungen unter Verwendung von Wissensgraph-Einbettungen und automatisch induzierten Regeln. Eine Cluster-Erklärung besteht aus einer Kombination von Relationen zwischen den Entitäten, die den Cluster identifizieren. ExCut verbessert gleichzeitig die Cluster- Qualität und die Cluster-Erklärbarkeit durch iteratives Verschränken des Lernens von Einbettungen und Regeln. Experimente zeigen, dass ExCut Cluster von hoher Qualität berechnet und dass die Cluster-Erklärungen für Nutzer informativ sind

    Scalable and Declarative Information Extraction in a Parallel Data Analytics System

    Get PDF
    Informationsextraktions (IE) auf sehr großen Datenmengen erfordert hochkomplexe, skalierbare und anpassungsfähige Systeme. Obwohl zahlreiche IE-Algorithmen existieren, ist die nahtlose und erweiterbare Kombination dieser Werkzeuge in einem skalierbaren System immer noch eine große Herausforderung. In dieser Arbeit wird ein anfragebasiertes IE-System für eine parallelen Datenanalyseplattform vorgestellt, das für konkrete Anwendungsdomänen konfigurierbar ist und für Textsammlungen im Terabyte-Bereich skaliert. Zunächst werden konfigurierbare Operatoren für grundlegende IE- und Web-Analytics-Aufgaben definiert, mit denen komplexe IE-Aufgaben in Form von deklarativen Anfragen ausgedrückt werden können. Alle Operatoren werden hinsichtlich ihrer Eigenschaften charakterisiert um das Potenzial und die Bedeutung der Optimierung nicht-relationaler, benutzerdefinierter Operatoren (UDFs) für Data Flows hervorzuheben. Anschließend wird der Stand der Technik in der Optimierung nicht-relationaler Data Flows untersucht und herausgearbeitet, dass eine umfassende Optimierung von UDFs immer noch eine Herausforderung ist. Darauf aufbauend wird ein erweiterbarer, logischer Optimierer (SOFA) vorgestellt, der die Semantik von UDFs mit in die Optimierung mit einbezieht. SOFA analysiert eine kompakte Menge von Operator-Eigenschaften und kombiniert eine automatisierte Analyse mit manuellen UDF-Annotationen, um die umfassende Optimierung von Data Flows zu ermöglichen. SOFA ist in der Lage, beliebige Data Flows aus unterschiedlichen Anwendungsbereichen logisch zu optimieren, was zu erheblichen Laufzeitverbesserungen im Vergleich mit anderen Techniken führt. Als Viertes wird die Anwendbarkeit des vorgestellten Systems auf Korpora im Terabyte-Bereich untersucht und systematisch die Skalierbarkeit und Robustheit der eingesetzten Methoden und Werkzeuge beurteilt um schließlich die kritischsten Herausforderungen beim Aufbau eines IE-Systems für sehr große Datenmenge zu charakterisieren.Information extraction (IE) on very large data sets requires highly complex, scalable, and adaptive systems. Although numerous IE algorithms exist, their seamless and extensible combination in a scalable system still is a major challenge. This work presents a query-based IE system for a parallel data analysis platform, which is configurable for specific application domains and scales for terabyte-sized text collections. First, configurable operators are defined for basic IE and Web Analytics tasks, which can be used to express complex IE tasks in the form of declarative queries. All operators are characterized in terms of their properties to highlight the potential and importance of optimizing non-relational, user-defined operators (UDFs) for dataflows. Subsequently, we survey the state of the art in optimizing non-relational dataflows and highlight that a comprehensive optimization of UDFs is still a challenge. Based on this observation, an extensible, logical optimizer (SOFA) is introduced, which incorporates the semantics of UDFs into the optimization process. SOFA analyzes a compact set of operator properties and combines automated analysis with manual UDF annotations to enable a comprehensive optimization of data flows. SOFA is able to logically optimize arbitrary data flows from different application areas, resulting in significant runtime improvements compared to other techniques. Finally, the applicability of the presented system to terabyte-sized corpora is investigated. Hereby, we systematically evaluate scalability and robustness of the employed methods and tools in order to pinpoint the most critical challenges in building an IE system for very large data sets

    Natural Language Processing for Technology Foresight Summarization and Simplification: the case of patents

    Get PDF
    Technology foresight aims to anticipate possible developments, understand trends, and identify technologies of high impact. To this end, monitoring emerging technologies is crucial. Patents -- the legal documents that protect novel inventions -- can be a valuable source for technology monitoring. Millions of patent applications are filed yearly, with 3.4 million applications in 2021 only. Patent documents are primarily textual documents and disclose innovative and potentially valuable inventions. However, their processing is currently underresearched. This is due to several reasons, including the high document complexity: patents are very lengthy and are written in an extremely hard-to-read language, which is a mix of technical and legal jargon. This thesis explores how Natural Language Processing -- the discipline that enables machines to process human language automatically -- can aid patent processing. Specifically, we focus on two tasks: patent summarization (i.e., we try to reduce the document length while preserving its core content) and patent simplification (i.e., we try to reduce the document's linguistic complexity while preserving its original core meaning). We found that older patent summarization approaches were not compared on shared benchmarks (making thus it hard to draw conclusions), and even the most recent abstractive dataset presents important issues that might make comparisons meaningless. We try to fill both gaps: we first document the issues related to the BigPatent dataset and then benchmark extractive, abstraction, and hybrid approaches in the patent domain. We also explore transferring summarization methods from the scientific paper domain with limited success. For the automatic text simplification task, we noticed a lack of simplified text and parallel corpora. We fill this gap by defining a method to generate a silver standard for patent simplification automatically. Lay human judges evaluated the simplified sentences in the corpus as grammatical, adequate, and simpler, and we show that it can be used to train a state-of-the-art simplification model. This thesis describes the first steps toward Natural Language Processing-aided patent summarization and simplification. We hope it will encourage more research on the topic, opening doors for a productive dialog between NLP researchers and domain experts.Technology foresight aims to anticipate possible developments, understand trends, and identify technologies of high impact. To this end, monitoring emerging technologies is crucial. Patents -- the legal documents that protect novel inventions -- can be a valuable source for technology monitoring. Millions of patent applications are filed yearly, with 3.4 million applications in 2021 only. Patent documents are primarily textual documents and disclose innovative and potentially valuable inventions. However, their processing is currently underresearched. This is due to several reasons, including the high document complexity: patents are very lengthy and are written in an extremely hard-to-read language, which is a mix of technical and legal jargon. This thesis explores how Natural Language Processing -- the discipline that enables machines to process human language automatically -- can aid patent processing. Specifically, we focus on two tasks: patent summarization (i.e., we try to reduce the document length while preserving its core content) and patent simplification (i.e., we try to reduce the document's linguistic complexity while preserving its original core meaning). We found that older patent summarization approaches were not compared on shared benchmarks (making thus it hard to draw conclusions), and even the most recent abstractive dataset presents important issues that might make comparisons meaningless. We try to fill both gaps: we first document the issues related to the BigPatent dataset and then benchmark extractive, abstraction, and hybrid approaches in the patent domain. We also explore transferring summarization methods from the scientific paper domain with limited success. For the automatic text simplification task, we noticed a lack of simplified text and parallel corpora. We fill this gap by defining a method to generate a silver standard for patent simplification automatically. Lay human judges evaluated the simplified sentences in the corpus as grammatical, adequate, and simpler, and we show that it can be used to train a state-of-the-art simplification model. This thesis describes the first steps toward Natural Language Processing-aided patent summarization and simplification. We hope it will encourage more research on the topic, opening doors for a productive dialog between NLP researchers and domain experts

    Adaptable Closed-Domain Question Answering Using Contextualized CNN-Attention Models and Question Expansion

    Get PDF
    In closed-domain Question Answering (QA), the goal is to retrieve answers to questions within a specific domain. The main challenge of closed-domain QA is to develop a model that only requires small datasets for training since large-scale corpora may not be available. One approach is a flexible QA model that can adapt to different closed domains and train on their corpora. In this paper, we present a novel versatile reading comprehension style approach for closed-domain QA (called CA-AcdQA). The approach is based on pre-trained contextualized language models, Convolutional Neural Network (CNN), and a self-attention mechanism. The model captures the relevance between the question and context sentences at different levels of granularity by exploring the dependencies between the features extracted by the CNN. Moreover, we include candidate answer identification and question expansion techniques for context reduction and rewriting ambiguous questions. The model can be tuned to different domains with a small training dataset for sentence-level QA. The approach is tested on four publicly-available closed-domain QA datasets: Tesla (person), California (region), EU-law (system), and COVID-QA (biomedical) against nine other QA approaches. Results show that the ALBERT model variant outperforms all approaches on all datasets with a significant increase in Exact Match and F1 score. Furthermore, for the Covid-19 QA in which the text is complicated and specialized, the model is improved considerably with additional biomedical training resources (an F1 increase of 15.9 over the next highest baseline)

    Physical Representation-based Predicate Optimization for a Visual Analytics Database

    Full text link
    Querying the content of images, video, and other non-textual data sources requires expensive content extraction methods. Modern extraction techniques are based on deep convolutional neural networks (CNNs) and can classify objects within images with astounding accuracy. Unfortunately, these methods are slow: processing a single image can take about 10 milliseconds on modern GPU-based hardware. As massive video libraries become ubiquitous, running a content-based query over millions of video frames is prohibitive. One promising approach to reduce the runtime cost of queries of visual content is to use a hierarchical model, such as a cascade, where simple cases are handled by an inexpensive classifier. Prior work has sought to design cascades that optimize the computational cost of inference by, for example, using smaller CNNs. However, we observe that there are critical factors besides the inference time that dramatically impact the overall query time. Notably, by treating the physical representation of the input image as part of our query optimization---that is, by including image transforms, such as resolution scaling or color-depth reduction, within the cascade---we can optimize data handling costs and enable drastically more efficient classifier cascades. In this paper, we propose Tahoma, which generates and evaluates many potential classifier cascades that jointly optimize the CNN architecture and input data representation. Our experiments on a subset of ImageNet show that Tahoma's input transformations speed up cascades by up to 35 times. We also find up to a 98x speedup over the ResNet50 classifier with no loss in accuracy, and a 280x speedup if some accuracy is sacrificed.Comment: Camera-ready version of the paper submitted to ICDE 2019, In Proceedings of the 35th IEEE International Conference on Data Engineering (ICDE 2019

    Proceedings of the 6th Dutch-Belgian Information Retrieval Workshop

    Get PDF
    • …
    corecore