110 research outputs found

    Exploiting periodicity to extract the atrial activity in atrial arrhythmias

    Get PDF
    [EN] Atrial fibrillation disorders are one of the main arrhythmias of the elderly. The atrial and ventricular activities are decoupled during an atrial fibrillation episode, and very rapid and irregular waves replace the usual atrial P-wave in a normal sinus rhythm electrocardiogram (ECG). The estimation of these wavelets is a must for clinical analysis. We propose a new approach to this problem focused on the quasiperiodicity of these wavelets. Atrial activity is characterized by a main atrial rhythm in the interval 3-12 Hz. It enables us to establish the problem as the separation of the original sources from the instantaneous linear combination of them recorded in the ECG or the extraction of only the atrial component exploiting the quasiperiodic feature of the atrial signal. This methodology implies the previous estimation of such main atrial period. We present two algorithms that separate and extract the atrial rhythm starting from a prior estimation of the main atrial frequency. The first one is an algebraic method based on the maximization of a cost function that measures the periodicity. The other one is an adaptive algorithm that exploits the decorrelation of the atrial and other signals diagonalizing the correlation matrices at multiple lags of the period of atrial activity. The algorithms are applied successfully to synthetic and real data. In simulated ECGs, the average correlation index obtained was 0.811 and 0.847, respectively. In real ECGs, the accuracy of the results was validated using spectral and temporal parameters. The average peak frequency and spectral concentration obtained were 5.550 and 5.554 Hz and 56.3 and 54.4%, respectively, and the kurtosis was 0.266 and 0.695. For validation purposes, we compared the proposed algorithms with established methods, obtaining better results for simulated and real registers.This paper is in part supported by the Valencia Regional Government (Generalitat Valenciana) through project GV/2010/002 (Conselleria d'Educacio) and by the Universidad Politecnica de Valencia under grant no. PAID-06-09-003-382.Llinares Llopis, R.; Igual García, J. (2011). Exploiting periodicity to extract the atrial activity in atrial arrhythmias. EURASIP Journal on Advances in Signal Processing. 1(134):1-16. doi:10.1186/1687-6180-2011-134S1161134Rieta J, Castells F, Sanchez C, Zarzoso V, Millet J: IEEE Trans Biomed Eng. 2004,51(7):1176. 10.1109/TBME.2004.827272Fuster V, Ryden L, Asinger R, et al.: Circulation. 2001, 104: 2118.Sörnmo L, Stridh M, Husser D, Bollmann A, Olsson S: Philos Trans A. 2009,367(1887):235. 10.1098/rsta.2008.0162Bollmann A, Husser D, Mainardi L, Lombardi F, Langley P, Murray A, Rieta J, Millet J, Olsson S, Stridh M, Sörnmo L: Europace. 2006,8(11):911. 10.1093/europace/eul113Stridh M, Sornmo L, Meurling C, Olsson S: IEEE Trans Biomed Eng. 2004,51(1):100. 10.1109/TBME.2003.820331Asano Y, Saito J, Matsumoto K, Kaneko K, Yamamoto T, Uchida M: Am J Cardiol. 1992,69(12):1033. 10.1016/0002-9149(92)90859-WStambler B, Wood M, Ellenbogen K: Circulation. 1997,96(12):4298.Manios E, Kanoupakis E, Chlouverakis G, Kaleboubas M, Mavrakis H, Vardas P: Cardiovasc Res. 2000,47(2):244. 10.1016/S0008-6363(00)00100-0Stridh M, Sornmo L: IEEE Trans Biomed Eng. 2001,48(1):105. 10.1109/10.900266Castells F, Igual J, Rieta J, Sanchez C, Millet J: Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP'03). 2003., 5:Castells F, Rieta J, Millet J, Zarzoso V: IEEE Trans Biomed Eng. 2005,52(2):258. 10.1109/TBME.2004.840473Petrutiu S, Ng J, Nijm G, Al-Angari H, Swiryn S, Sahakian A: IEEE Eng Med Biol Mag. 2006,25(6):24.Stridh M, Bollmann A, Olsson S, Sornmo L: IEEE Eng Med Biol Mag. 2006,25(6):31.Langley P, Bourke J, Murray A: Computers in Cardiology. 2000.Sassi R, Corino V, Mainardi L: Ann Biomed Eng. 2009,37(10):2082-921. 10.1007/s10439-009-9757-3Llinares R, Igual J, Salazar A, Camacho A: Digit Signal Process. 2011,21(2):391. 10.1016/j.dsp.2010.06.005Sameni R, Jutten C, Shamsollahi M: IEEE Trans Biomed Eng. 2008,55(8):1935.Li X: IEEE Signal Process Lett. 2006,14(1):58.Llinares R, Igual J, Miró-Borrás J: Comput Biol Med. 2010,40(11-12):943. 10.1016/j.compbiomed.2010.10.006Belouchrani A, Abed-Meraim K, Cardoso J, Moulines E: IEEE Trans Signal Process. 1997,45(2):434. 10.1109/78.554307Lemay M, Vesin J, van Oosterom A, Jacquemet V, Kappenberger L: IEEE Trans Biomed Eng. 2007,54(3):542.Alcaraz R, Rieta J: Physiol Meas. 2008,29(12):1351. 10.1088/0967-3334/29/12/00

    Detection of focal source and arrhythmogenic substrate from body surface potentials to guide atrial fibrillation ablation

    Get PDF
    Focal sources (FS) are believed to be important triggers and a perpetuation mechanism for paroxysmal atrial fibrillation (AF). Detecting FS and determining AF sustainability in atrial tissue can help guide ablation targeting. We hypothesized that sustained rotors during FS-driven episodes indicate an arrhythmogenic substrate for sustained AF, and that non-invasive electrical recordings, like electrocardiograms (ECGs) or body surface potential maps (BSPMs), could be used to detect FS and AF sustainability. Computer simulations were performed on five bi-atrial geometries. FS were induced by pacing at cycle lengths of 120–270 ms from 32 atrial sites and four pulmonary veins. Self-sustained reentrant activities were also initiated around the same 32 atrial sites with inexcitable cores of radii of 0, 0.5 and 1 cm. FS fired for two seconds and then AF inducibility was tested by whether activation was sustained for another second. ECGs and BSPMs were simulated. Equivalent atrial sources were extracted using second-order blind source separation, and their cycle length, periodicity and contribution, were used as features for random forest classifiers. Longer rotor duration during FS-driven episodes indicates higher AF inducibility (area under ROC curve = 0.83). Our method had accuracy of 90.6±1.0% and 90.6±0.6% in detecting FS presence, and 93.1±0.6% and 94.2±1.2% in identifying AF sustainability, and 80.0±6.6% and 61.0±5.2% in determining the atrium of the focal site, from BSPMs and ECGs of five atria. The detection of FS presence and AF sustainability were insensitive to vest placement (±9.6%). On pre-operative BSPMs of 52 paroxysmal AF patients, patients classified with initiator-type FS on a single atrium resulted in improved two-to-three-year AF-free likelihoods (p-value < 0.01, logrank tests). Detection of FS and arrhythmogenic substrate can be performed from ECGs and BSPMs, enabling non-invasive mapping towards mechanism-targeted AF treatment, and malignant ectopic beat detection with likely AF progression

    Cardiac Inter Beat Interval and Atrial Fibrillation Detection using Video Plethysmography

    Get PDF
    Facial videoplethysmography provides non-contact measurement of heart activity based on blood volume pulsations detected in facial tissue. Typically, the signal is extracted using a simple webcam followed by elaborated signal processing methods, and provides limited accuracy of time-domain characteristics. In this study, we explore the possibility of providing accurate time-domain pulse and inter-beat interval measurements using a high- quality image sensor camera and various signal processing approaches, and use these measurements to diagnose atrial fibrillation. We capture synchronized signals using a high- quality camera, a simple webcam, an earlobe photoplethysmography sensor, and a body- surface electrocardiogram from a large group of subjects, including subjects diagnosed with cardiac arrhythmias. All signals are processed using both blind source separation and color conversion. We then assess accuracy of IBI detection, heart rate variability estimation, and atrial fibrillation diagnose by comparing to a body-surface electrocardiogram. We present a new heart variability indicator for blood volume pulsating signals. Our results demonstrate that the accuracy of a facial VPG system is greatly improved when using a high-quality camera. Coupling the high-quality camera with color conversion from RGB to Hue provides a level of accuracy equivalent to that of commercially available photoplethysmography sensors, and offers a non-contact alternative to current technology for heart rate variability assessment and atrial fibrillation screening

    Contactless Electrocardiogram Monitoring with Millimeter Wave Radar

    Full text link
    The electrocardiogram (ECG) has always been an important biomedical test to diagnose cardiovascular diseases. Current approaches for ECG monitoring are based on body attached electrodes leading to uncomfortable user experience. Therefore, contactless ECG monitoring has drawn tremendous attention, which however remains unsolved. In fact, cardiac electrical-mechanical activities are coupling in a well-coordinated pattern. In this paper, we achieve contactless ECG monitoring by breaking the boundary between the cardiac mechanical and electrical activity. Specifically, we develop a millimeter-wave radar system to contactlessly measure cardiac mechanical activity and reconstruct ECG without any contact in. To measure the cardiac mechanical activity comprehensively, we propose a series of signal processing algorithms to extract 4D cardiac motions from radio frequency (RF) signals. Furthermore, we design a deep neural network to solve the cardiac related domain transformation problem and achieve end-to-end reconstruction mapping from RF input to the ECG output. The experimental results show that our contactless ECG measurements achieve timing accuracy of cardiac electrical events with median error below 14ms and morphology accuracy with median Pearson-Correlation of 90% and median Root-Mean-Square-Error of 0.081mv compared to the groudtruth ECG. These results indicate that the system enables the potential of contactless, continuous and accurate ECG monitoring

    Statistical and Graph-Based Signal Processing: Fundamental Results and Application to Cardiac Electrophysiology

    Get PDF
    The goal of cardiac electrophysiology is to obtain information about the mechanism, function, and performance of the electrical activities of the heart, the identification of deviation from normal pattern and the design of treatments. Offering a better insight into cardiac arrhythmias comprehension and management, signal processing can help the physician to enhance the treatment strategies, in particular in case of atrial fibrillation (AF), a very common atrial arrhythmia which is associated to significant morbidities, such as increased risk of mortality, heart failure, and thromboembolic events. Catheter ablation of AF is a therapeutic technique which uses radiofrequency energy to destroy atrial tissue involved in the arrhythmia sustenance, typically aiming at the electrical disconnection of the of the pulmonary veins triggers. However, recurrence rate is still very high, showing that the very complex and heterogeneous nature of AF still represents a challenging problem. Leveraging the tools of non-stationary and statistical signal processing, the first part of our work has a twofold focus: firstly, we compare the performance of two different ablation technologies, based on contact force sensing or remote magnetic controlled, using signal-based criteria as surrogates for lesion assessment. Furthermore, we investigate the role of ablation parameters in lesion formation using the late-gadolinium enhanced magnetic resonance imaging. Secondly, we hypothesized that in human atria the frequency content of the bipolar signal is directly related to the local conduction velocity (CV), a key parameter characterizing the substrate abnormality and influencing atrial arrhythmias. Comparing the degree of spectral compression among signals recorded at different points of the endocardial surface in response to decreasing pacing rate, our experimental data demonstrate a significant correlation between CV and the corresponding spectral centroids. However, complex spatio-temporal propagation pattern characterizing AF spurred the need for new signals acquisition and processing methods. Multi-electrode catheters allow whole-chamber panoramic mapping of electrical activity but produce an amount of data which need to be preprocessed and analyzed to provide clinically relevant support to the physician. Graph signal processing has shown its potential on a variety of applications involving high-dimensional data on irregular domains and complex network. Nevertheless, though state-of-the-art graph-based methods have been successful for many tasks, so far they predominantly ignore the time-dimension of data. To address this shortcoming, in the second part of this dissertation, we put forth a Time-Vertex Signal Processing Framework, as a particular case of the multi-dimensional graph signal processing. Linking together the time-domain signal processing techniques with the tools of GSP, the Time-Vertex Signal Processing facilitates the analysis of graph structured data which also evolve in time. We motivate our framework leveraging the notion of partial differential equations on graphs. We introduce joint operators, such as time-vertex localization and we present a novel approach to significantly improve the accuracy of fast joint filtering. We also illustrate how to build time-vertex dictionaries, providing conditions for efficient invertibility and examples of constructions. The experimental results on a variety of datasets suggest that the proposed tools can bring significant benefits in various signal processing and learning tasks involving time-series on graphs. We close the gap between the two parts illustrating the application of graph and time-vertex signal processing to the challenging case of multi-channels intracardiac signals

    Advances in Digital Processing of Low-Amplitude Components of Electrocardiosignals

    Get PDF
    This manual has been published within the framework of the BME-ENA project under the responsibility of National Technical University of Ukraine. The BME-ENA “Biomedical Engineering Education Tempus Initiative in Eastern Neighbouring Area”, Project Number: 543904-TEMPUS-1-2013-1-GR-TEMPUS-JPCR is a Joint Project within the TEMPUS IV program. This project has been funded with support from the European Commission.Навчальний посібник присвячено розробці методів та засобів для неінвазивного виявлення та дослідження тонких проявів електричної активності серця. Особлива увага приділяється вдосконаленню інформаційного та алгоритмічного забезпечення систем електрокардіографії високого розрізнення для ранньої діагностики електричної нестабільності міокарда, а також для оцінки функціонального стану плоду під час вагітності. Теоретичні основи супроводжуються прикладами реалізації алгоритмів за допомогою системи MATLAB. Навчальний посібник призначений для студентів, аспірантів, а також фахівців у галузі біомедичної електроніки та медичних працівників.The teaching book is devoted to development and research of methods and tools for non-invasive detection of subtle manifistations of heart electrical activity. Particular attention is paid to the improvement of information and algorithmic support of high resolution electrocardiography for early diagnosis of myocardial electrical instability, as well as for the evaluation of the functional state of the fetus during pregnancy examination. The theoretical basis accompanied by the examples of implementation of the discussed algorithms with the help of MATLAB. The teaching book is intended for students, graduate students, as well as specialists in the field of biomedical electronics and medical professionals

    High Resolution Multi-parametric Diagnostics and Therapy of Atrial Fibrillation: Chasing Arrhythmia Vulnerabilities in the Spatial Domain

    Get PDF
    After a century of research, atrial fibrillation (AF) remains a challenging disease to study and exceptionally resilient to treatment. Unfortunately, AF is becoming a massive burden on the health care system with an increasing population of susceptible elderly patients and expensive unreliable treatment options. Pharmacological therapies continue to be disappointingly ineffective or are hampered by side effects due to the ubiquitous nature of ion channel targets throughout the body. Ablative therapy for atrial tachyarrhythmias is growing in acceptance. However, ablation procedures can be complex, leading to varying levels of recurrence, and have a number of serious risks. The high recurrence rate could be due to the difficulty of accurately predicting where to draw the ablation lines in order to target the pathophysiology that initiates and maintains the arrhythmia or an inability to distinguish sub-populations of patients who would respond well to such treatments. There are electrical cardioversion options but there is not a practical implanted deployment of this strategy. Under the current bioelectric therapy paradigm there is a trade-off between efficacy and the pain and risk of myocardial damage, all of which are positively correlated with shock strength. Contrary to ventricular fibrillation, pain becomes a significant concern for electrical defibrillation of AF due to the fact that a patient is conscious when experiencing the arrhythmia. Limiting the risk of myocardial injury is key for both forms of fibrillation. In this project we aim to address the limitations of current electrotherapy by diverging from traditional single shock protocols. We seek to further clarify the dynamics of arrhythmia drivers in space and to target therapy in both the temporal and spatial domain; ultimately culminating in the design of physiologically guided applied energy protocols. In an effort to provide further characterization of the organization of AF, we used transillumination optical mapping to evaluate the presence of three-dimensional electrical substrate variations within the transmural wall during acutely induced episodes of AF. The results of this study suggest that transmural propagation may play a role in AF maintenance mechanisms, with a demonstrated range of discordance between the epicardial and endocardial dynamic propagation patterns. After confirming the presence of epi-endo dyssynchrony in multiple animal models, we further investigated the anatomical structure to look for regional trends in transmural fiber orientation that could help explain the spectrum of observed patterns. Simultaneously, we designed and optimized a multi-stage, multi-path defibrillation paradigm that can be tailored to individual AF frequency content in the spatial and temporal domain. These studies continue to drive down the defibrillation threshold of electrotherapies in an attempt to achieve a pain-free AF defibrillation solution. Finally, we designed and characterized a novel platform of stretchable electronics that provide instrumented membranes across the epicardial surface or implanted within the transmural wall to provide physiological feedback during electrotherapy beyond just the electrical state of the tissue. By combining a spatial analysis of the arrhythmia drivers, the energy delivered and the resulting damage, we hope to enhance the biophysical understanding of AF electrical cardioversion and xiii design an ideal targeted energy delivery protocol to improve upon all limitations of current electrotherapy

    Cardiac Arrhythmias

    Get PDF
    The most intimate mechanisms of cardiac arrhythmias are still quite unknown to scientists. Genetic studies on ionic alterations, the electrocardiographic features of cardiac rhythm and an arsenal of diagnostic tests have done more in the last five years than in all the history of cardiology. Similarly, therapy to prevent or cure such diseases is growing rapidly day by day. In this book the reader will be able to see with brighter light some of these intimate mechanisms of production, as well as cutting-edge therapies to date. Genetic studies, electrophysiological and electrocardiographyc features, ion channel alterations, heart diseases still unknown , and even the relationship between the psychic sphere and the heart have been exposed in this book. It deserves to be read

    Serum potassium concentration monitoring by ECG time warping analysis on the T wave

    Get PDF
    This doctoral thesis was developed within the joint Ph.D. program in biomedical engineering at Universitat Politècnica de Catalunya (Barcelona, Spain) and University of Zaragoza (Zaragoza, Spain) in the framework of Doctorats Industrials program co-financed by Laboratorios Rubió S.A. (Castellbisbal, Spain) and Agència de Gestió d’Ajuts Universitaris i de Recerca, Generalitat de Catalunya (Spain). This thesis was performed in partnership with the Nephrology ward from Hospital Clínico Universitario Lozano Blesa (Zaragoza, Spain) and in collaboration with Dr J. Ramírez from the William Harvey Research Institute, Queen Mary University of London (London, UK).End-stage renal disease (ESRD) patients demonstrate an increased incidence of sudden cardiac death (SCD) with declining kidney functioning as a consequence of blood potassium ([K+]) homeostasis impairment, which is restored by hemodialysis (HD) therapy. The clinically established method for the diagnosis of [K+] imbalance is blood tests, an invasive and costly procedure that limits continuous monitoring of ESRD patients. A non-invasive ambulatory index, able to quantify changes in [K+] level is an open issue. In this context, the electrocardiogram (ECG) and in particular, the T wave (TW) morphology, has been shown to be strongly correlated with [K+] imbalance. Therefore, the aim of this dissertation is to investigate and to propose TW-derived markers able to monitor changes in [K+] levels in ESRD patients undergoing HD. For that purpose, the time warping analysis, a technique that allows the comparison and quantification of differences between two different TW shapes, was investigated. The application of TW time warping based markers in monitoring [K+ ] variations (Δ [K+]) and the derivation of a heart-rate corrected marker is proposed and compared with respect to two well-established Δ [K+]-related TW-based indexes. All the markers are evaluated in a single lead approach and after having emphasised the TW energy content through spatial transformation by Principal Component Analysis (PCA). Results demonstrate that the proposed biomarkers outperform the already proposed indexes, also proving that the use of PCA transformed lead generates markers with a higher correlation with Δ [K+] than the single lead approach. The possibility to improve markers robustness in the case of low signal-to-noise ratio ECGs, by spatially transforming the signal maximising the beat-to-beat TW periodicity criteria through the so-called Periodic Component Analysis (pCA), is then explored. pCA-based markers show superior performance during and after the HD than those obtained by PCA suggesting improved stability for continuous Δ [K+] tracking. The thesis studies also the application of regressions models to quantify Δ [K+] from pCA-based time warping markers. The accuracy of the regression models is evaluated by correlation and estimation error between the actual and the corresponding model-estimated Δ [K+] values, and the smallest estimation error is found for quadratic regression models. Being the time warping derived markers sensitive to TW boundary delineation errors, which may endanger their prognostic power, the advantages of using a weighting stage is investigated for their robust computation. The performance of two weighting functions (WF)s is tested and compared with respect to the control no weighting case, in simulated scenarios and in real scenarios (i.e. for [K+] monitoring and SCD risk stratification). No improvements in [K+] monitoring are found, probably due to the considerable marked [K+]-induced TW morphological changes. On the contrary, both simulation tests and SCD risk stratification analysis show that the proposed WFs can enhance the robustness of TW time warping analysis against TW delineation errors. In conclusion, this Doctoral Thesis confirms the hypothesis that enhanced perforce in Δ [K+] tracking and quantification can be achieved by analysing the overall TW morphology by time warping analysis. The simplicity of the technology, together with its low cost and ease of acquisition, should provide a new opportunity for TW analysis to reach standard clinical practice. Moreover, the use of WFs to minimise the undesired effects of TW delineation errors on the computation of time warping markers revealed a noticeable improvement of the SCD risk stratification power of time warping derived indexes.Los pacientes con enfermedad renal en etapa terminal (ESRD) demuestran una mayor incidencia de muerte cardíaca súbita (SCD) tras el deterioro del funcionamiento renal como consecuencia del desequilibrio del potasio ([K+]) en sangre. Este último se restablece mediante la terapia de hemodiálisis (HD). El desequilibrio de [K+] se diagnostica a través del análisis de sangre, un procedimiento invasivo y costoso que limita la monitorización de los pacientes con ESRD. Se necesita un índice ambulatorio no invasivo, capaz de cuantificar los cambios en el nivel de [K+] (Δ [K+]). En este contexto, se ha demostrado que el electrocardiograma (ECG) y en particular la onda T (TW), están correlacionados con Δ [K+]. El objetivo de esta tesis es evaluar marcadores derivados de la TW capaces de monitorizar ¿[K+] en pacientes con ESRD sometidos a HD. Para ello, se aplicó el análisis time warping, una técnica que permite la comparación de dos formas diferentes de TW. En primer lugar, se evalúa la aplicación de marcadores basados en el time warping para el seguimiento de Δ [K+] así como la derivación de un marcador corregido por la frecuencia cardíaca, comparando los marcadores con respecto a dos índices basados en TW bien establecidos y relacionados con Δ [K+]. Todos los marcadores se evalúan en las derivaciones independientes y después de haber enfatizado el contenido de energía de TW a través del Análisis de Componentes Principales (PCA). Los resultados demuestran mejores prestaciones de los marcadores time warping respecto a los ya propuestos y que el uso de PCA genera marcadores con una correlación más alta con Δ [K+] respecto a las derivaciones independientes. A continuación, se explora la posibilidad de mejorar la robustez de los marcadores en el caso de ECG con una relación señal/ruido baja, maximizando la periodicidad de TW latido a latido mediante el Análisisde Componentes Periódicos (pCA). Los marcadores basados en pCA muestran un rendimiento superior durante y después de la HD que los obtenidos por PCA, lo que sugiere una estabilidad mejorada para el seguimiento continuo de Δ [K+]. Luego, se evalúan modelos de regresión para cuantificar [K+] a partir de marcadores basados en pCA. La precisión de los modelos de regresión se evalúa mediante el error de estimación entre valores reales de Δ [K+] y los correspondientes estimados por el modelo. Con el error de estimación más pequeño, el modelo cuadrático es el más adecuado para la cuantificación de [K+].Siendo el análisis time warping sensible a los errores de delineación de los límites de TW, lo que supone un riesgo para su poder pronóstico, se investigan las ventajas de usar una etapa de ponderación para el cálculo de marcadores time warping. El rendimiento de dos funciones de ponderación (WF) se prueba y se compara con respecto al caso de control sin ponderación, en escenarios simulados y en escenarios reales (para el seguimiento de [K+] y la estratificación del riesgo de SCD). No se encontraron mejoras en la monitorización de [K+] debido a los considerables cambios morfológicos de TW inducidos por Δ [K+]. Por otro lado, tanto las pruebas de simulación como el análisis de estratificación de riesgo de SCD muestran que los WF propuestos pueden mejorar la robustez del análisis time warping de TW contra los errores dedelineación de TW. En conclusión, esta tesis doctoral confirma la hipótesis de que se puede lograr un mejor seguimiento y cuantificación de Δ [K+] mediante el análisis de la morfología de TW mediante el análisis time warping. La simplicidad de la tecnología, junto con su bajo costo y facilidad de adquisición del ECG, debería brindar una nueva oportunidad para que el análisis de TW en la práctica clínica rutinaria. Además, el uso de WF para minimizar los efectos no deseados de errores de delineación de TW en el cálculo de los marcadores time warping reveló una mejora del poder de estratificación del riesgoEnginyeria biomèdic

    Serum potassium concentration monitoring by ECG time warping analysis on the T wave

    Get PDF
    This doctoral thesis was developed within the joint Ph.D. program in biomedical engineering at Universitat Politècnica de Catalunya (Barcelona, Spain) and University of Zaragoza (Zaragoza, Spain) in the framework of Doctorats Industrials program co-financed by Laboratorios Rubió S.A. (Castellbisbal, Spain) and Agència de Gestió d’Ajuts Universitaris i de Recerca, Generalitat de Catalunya (Spain). This thesis was performed in partnership with the Nephrology ward from Hospital Clínico Universitario Lozano Blesa (Zaragoza, Spain) and in collaboration with Dr J. Ramírez from the William Harvey Research Institute, Queen Mary University of London (London, UK).End-stage renal disease (ESRD) patients demonstrate an increased incidence of sudden cardiac death (SCD) with declining kidney functioning as a consequence of blood potassium ([K+]) homeostasis impairment, which is restored by hemodialysis (HD) therapy. The clinically established method for the diagnosis of [K+] imbalance is blood tests, an invasive and costly procedure that limits continuous monitoring of ESRD patients. A non-invasive ambulatory index, able to quantify changes in [K+] level is an open issue. In this context, the electrocardiogram (ECG) and in particular, the T wave (TW) morphology, has been shown to be strongly correlated with [K+] imbalance. Therefore, the aim of this dissertation is to investigate and to propose TW-derived markers able to monitor changes in [K+] levels in ESRD patients undergoing HD. For that purpose, the time warping analysis, a technique that allows the comparison and quantification of differences between two different TW shapes, was investigated. The application of TW time warping based markers in monitoring [K+ ] variations (Δ [K+]) and the derivation of a heart-rate corrected marker is proposed and compared with respect to two well-established Δ [K+]-related TW-based indexes. All the markers are evaluated in a single lead approach and after having emphasised the TW energy content through spatial transformation by Principal Component Analysis (PCA). Results demonstrate that the proposed biomarkers outperform the already proposed indexes, also proving that the use of PCA transformed lead generates markers with a higher correlation with Δ [K+] than the single lead approach. The possibility to improve markers robustness in the case of low signal-to-noise ratio ECGs, by spatially transforming the signal maximising the beat-to-beat TW periodicity criteria through the so-called Periodic Component Analysis (pCA), is then explored. pCA-based markers show superior performance during and after the HD than those obtained by PCA suggesting improved stability for continuous Δ [K+] tracking. The thesis studies also the application of regressions models to quantify Δ [K+] from pCA-based time warping markers. The accuracy of the regression models is evaluated by correlation and estimation error between the actual and the corresponding model-estimated Δ [K+] values, and the smallest estimation error is found for quadratic regression models. Being the time warping derived markers sensitive to TW boundary delineation errors, which may endanger their prognostic power, the advantages of using a weighting stage is investigated for their robust computation. The performance of two weighting functions (WF)s is tested and compared with respect to the control no weighting case, in simulated scenarios and in real scenarios (i.e. for [K+] monitoring and SCD risk stratification). No improvements in [K+] monitoring are found, probably due to the considerable marked [K+]-induced TW morphological changes. On the contrary, both simulation tests and SCD risk stratification analysis show that the proposed WFs can enhance the robustness of TW time warping analysis against TW delineation errors. In conclusion, this Doctoral Thesis confirms the hypothesis that enhanced perforce in Δ [K+] tracking and quantification can be achieved by analysing the overall TW morphology by time warping analysis. The simplicity of the technology, together with its low cost and ease of acquisition, should provide a new opportunity for TW analysis to reach standard clinical practice. Moreover, the use of WFs to minimise the undesired effects of TW delineation errors on the computation of time warping markers revealed a noticeable improvement of the SCD risk stratification power of time warping derived indexes.Los pacientes con enfermedad renal en etapa terminal (ESRD) demuestran una mayor incidencia de muerte cardíaca súbita (SCD) tras el deterioro del funcionamiento renal como consecuencia del desequilibrio del potasio ([K+]) en sangre. Este último se restablece mediante la terapia de hemodiálisis (HD). El desequilibrio de [K+] se diagnostica a través del análisis de sangre, un procedimiento invasivo y costoso que limita la monitorización de los pacientes con ESRD. Se necesita un índice ambulatorio no invasivo, capaz de cuantificar los cambios en el nivel de [K+] (Δ [K+]). En este contexto, se ha demostrado que el electrocardiograma (ECG) y en particular la onda T (TW), están correlacionados con Δ [K+]. El objetivo de esta tesis es evaluar marcadores derivados de la TW capaces de monitorizar ¿[K+] en pacientes con ESRD sometidos a HD. Para ello, se aplicó el análisis time warping, una técnica que permite la comparación de dos formas diferentes de TW. En primer lugar, se evalúa la aplicación de marcadores basados en el time warping para el seguimiento de Δ [K+] así como la derivación de un marcador corregido por la frecuencia cardíaca, comparando los marcadores con respecto a dos índices basados en TW bien establecidos y relacionados con Δ [K+]. Todos los marcadores se evalúan en las derivaciones independientes y después de haber enfatizado el contenido de energía de TW a través del Análisis de Componentes Principales (PCA). Los resultados demuestran mejores prestaciones de los marcadores time warping respecto a los ya propuestos y que el uso de PCA genera marcadores con una correlación más alta con Δ [K+] respecto a las derivaciones independientes. A continuación, se explora la posibilidad de mejorar la robustez de los marcadores en el caso de ECG con una relación señal/ruido baja, maximizando la periodicidad de TW latido a latido mediante el Análisisde Componentes Periódicos (pCA). Los marcadores basados en pCA muestran un rendimiento superior durante y después de la HD que los obtenidos por PCA, lo que sugiere una estabilidad mejorada para el seguimiento continuo de Δ [K+]. Luego, se evalúan modelos de regresión para cuantificar [K+] a partir de marcadores basados en pCA. La precisión de los modelos de regresión se evalúa mediante el error de estimación entre valores reales de Δ [K+] y los correspondientes estimados por el modelo. Con el error de estimación más pequeño, el modelo cuadrático es el más adecuado para la cuantificación de [K+].Siendo el análisis time warping sensible a los errores de delineación de los límites de TW, lo que supone un riesgo para su poder pronóstico, se investigan las ventajas de usar una etapa de ponderación para el cálculo de marcadores time warping. El rendimiento de dos funciones de ponderación (WF) se prueba y se compara con respecto al caso de control sin ponderación, en escenarios simulados y en escenarios reales (para el seguimiento de [K+] y la estratificación del riesgo de SCD). No se encontraron mejoras en la monitorización de [K+] debido a los considerables cambios morfológicos de TW inducidos por Δ [K+]. Por otro lado, tanto las pruebas de simulación como el análisis de estratificación de riesgo de SCD muestran que los WF propuestos pueden mejorar la robustez del análisis time warping de TW contra los errores dedelineación de TW. En conclusión, esta tesis doctoral confirma la hipótesis de que se puede lograr un mejor seguimiento y cuantificación de Δ [K+] mediante el análisis de la morfología de TW mediante el análisis time warping. La simplicidad de la tecnología, junto con su bajo costo y facilidad de adquisición del ECG, debería brindar una nueva oportunidad para que el análisis de TW en la práctica clínica rutinaria. Además, el uso de WF para minimizar los efectos no deseados de errores de delineación de TW en el cálculo de los marcadores time warping reveló una mejora del poder de estratificación del riesgoPostprint (published version
    corecore