24 research outputs found

    Lattice-based statistical spoken document retrieval

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    Augmenting automatic speech recognition and search models for spoken content retrieval

    Get PDF
    Spoken content retrieval (SCR) is a process to provide a user with spoken documents in which the user is potentially interested. Unlike textual documents, searching through speech is not trivial due to its representation. Generally, automatic speech recognition (ASR) is used to transcribe spoken content such as user-generated videos and podcast episodes into transcripts before search operations are performed. Despite recent improvements in ASR, transcription errors can still be present in automatic transcripts. This is in particular when ASR is applied to out-of-domain data or speech with background noise. This thesis explores improvement of ASR systems and search models for enhanced SCR on user-generated spoken content. There are three topics explored in this thesis. Firstly, the use of multimodal signals for ASR is investigated. This is motivated to integrate background contexts of spoken content into ASR. Integration of visual signals and document metadata into ASR is hypothesised to produce transcripts more aligned to background contexts of speech. Secondly, the use of semi-supervised training and content genre information from metadata are exploited for ASR. This approach is motivated to mitigate the transcription errors caused by recognition of out-of-domain speech. Thirdly, the use of neural models and the model extension using N-best ASR transcripts are investigated. Using ASR N-best transcripts instead of 1-best for search models is motivated because "key terms" missed in 1-best can be present in the N-best transcripts. A series of experiments are conducted to examine those approaches to improvement of ASR systems and search models. The findings suggest that semi-supervised training bring practical improvement of ASR systems for SCR and the use of neural ranking models in particular with N-best transcripts improve the result of known-item search over the baseline BM25 model

    Word Importance Modeling to Enhance Captions Generated by Automatic Speech Recognition for Deaf and Hard of Hearing Users

    Get PDF
    People who are deaf or hard-of-hearing (DHH) benefit from sign-language interpreting or live-captioning (with a human transcriptionist), to access spoken information. However, such services are not legally required, affordable, nor available in many settings, e.g., impromptu small-group meetings in the workplace or online video content that has not been professionally captioned. As Automatic Speech Recognition (ASR) systems improve in accuracy and speed, it is natural to investigate the use of these systems to assist DHH users in a variety of tasks. But, ASR systems are still not perfect, especially in realistic conversational settings, leading to the issue of trust and acceptance of these systems from the DHH community. To overcome these challenges, our work focuses on: (1) building metrics for accurately evaluating the quality of automatic captioning systems, and (2) designing interventions for improving the usability of captions for DHH users. The first part of this dissertation describes our research on methods for identifying words that are important for understanding the meaning of a conversational turn within transcripts of spoken dialogue. Such knowledge about the relative importance of words in spoken messages can be used in evaluating ASR systems (in part 2 of this dissertation) or creating new applications for DHH users of captioned video (in part 3 of this dissertation). We found that models which consider both the acoustic properties of spoken words as well as text-based features (e.g., pre-trained word embeddings) are more effective at predicting the semantic importance of a word than models that utilize only one of these types of features. The second part of this dissertation describes studies to understand DHH users\u27 perception of the quality of ASR-generated captions; the goal of this work was to validate the design of automatic metrics for evaluating captions in real-time applications for these users. Such a metric could facilitate comparison of various ASR systems, for determining the suitability of specific ASR systems for supporting communication for DHH users. We designed experimental studies to elicit feedback on the quality of captions from DHH users, and we developed and evaluated automatic metrics for predicting the usability of automatically generated captions for these users. We found that metrics that consider the importance of each word in a text are more effective at predicting the usability of imperfect text captions than the traditional Word Error Rate (WER) metric. The final part of this dissertation describes research on importance-based highlighting of words in captions, as a way to enhance the usability of captions for DHH users. Similar to highlighting in static texts (e.g., textbooks or electronic documents), highlighting in captions involves changing the appearance of some texts in caption to enable readers to attend to the most important bits of information quickly. Despite the known benefits of highlighting in static texts, research on the usefulness of highlighting in captions for DHH users is largely unexplored. For this reason, we conducted experimental studies with DHH participants to understand the benefits of importance-based highlighting in captions, and their preference on different design configurations for highlighting in captions. We found that DHH users subjectively preferred highlighting in captions, and they reported higher readability and understandability scores and lower task-load scores when viewing videos with captions containing highlighting compared to the videos without highlighting. Further, in partial contrast to recommendations in prior research on highlighting in static texts (which had not been based on experimental studies with DHH users), we found that DHH participants preferred boldface, word-level, non-repeating highlighting in captions

    Spoken content retrieval beyond pipeline integration of automatic speech recognition and information retrieval

    Get PDF
    The dramatic increase in the creation of multimedia content is leading to the development of large archives in which a substantial amount of the information is in spoken form. Efficient access to this information requires effective spoken content retrieval (SCR) methods. Traditionally, SCR systems have focused on a pipeline integration of two fundamental technologies: transcription using automatic speech recognition (ASR) and search supported using text-based information retrieval (IR). Existing SCR approaches estimate the relevance of a spoken retrieval item based on the lexical overlap between a user’s query and the textual transcriptions of the items. However, the speech signal contains other potentially valuable non-lexical information that remains largely unexploited by SCR approaches. Particularly, acoustic correlates of speech prosody, that have been shown useful to identify salient words and determine topic changes, have not been exploited by existing SCR approaches. In addition, the temporal nature of multimedia content means that accessing content is a user intensive, time consuming process. In order to minimise user effort in locating relevant content, SCR systems could suggest playback points in retrieved content indicating the locations where the system believes relevant information may be found. This typically requires adopting a segmentation mechanism for splitting documents into smaller “elements” to be ranked and from which suitable playback points could be selected. Existing segmentation approaches do not generalise well to every possible information need or provide robustness to ASR errors. This thesis extends SCR beyond the standard ASR and IR pipeline approach by: (i) exploring the utilisation of prosodic information as complementary evidence of topical relevance to enhance current SCR approaches; (ii) determining elements of content that, when retrieved, minimise user search effort and provide increased robustness to ASR errors; and (iii) developing enhanced evaluation measures that could better capture the factors that affect user satisfaction in SCR

    Searching Spontaneous Conversational Speech:Proceedings of ACM SIGIR Workshop (SSCS2008)

    Get PDF

    Proceedings of the Eighth Italian Conference on Computational Linguistics CliC-it 2021

    Get PDF
    The eighth edition of the Italian Conference on Computational Linguistics (CLiC-it 2021) was held at Università degli Studi di Milano-Bicocca from 26th to 28th January 2022. After the edition of 2020, which was held in fully virtual mode due to the health emergency related to Covid-19, CLiC-it 2021 represented the first moment for the Italian research community of Computational Linguistics to meet in person after more than one year of full/partial lockdown

    Acoustic Modelling for Under-Resourced Languages

    Get PDF
    Automatic speech recognition systems have so far been developed only for very few languages out of the 4,000-7,000 existing ones. In this thesis we examine methods to rapidly create acoustic models in new, possibly under-resourced languages, in a time and cost effective manner. For this we examine the use of multilingual models, the application of articulatory features across languages, and the automatic discovery of word-like units in unwritten languages
    corecore