3,903 research outputs found

    Thirty Years of Machine Learning: The Road to Pareto-Optimal Wireless Networks

    Full text link
    Future wireless networks have a substantial potential in terms of supporting a broad range of complex compelling applications both in military and civilian fields, where the users are able to enjoy high-rate, low-latency, low-cost and reliable information services. Achieving this ambitious goal requires new radio techniques for adaptive learning and intelligent decision making because of the complex heterogeneous nature of the network structures and wireless services. Machine learning (ML) algorithms have great success in supporting big data analytics, efficient parameter estimation and interactive decision making. Hence, in this article, we review the thirty-year history of ML by elaborating on supervised learning, unsupervised learning, reinforcement learning and deep learning. Furthermore, we investigate their employment in the compelling applications of wireless networks, including heterogeneous networks (HetNets), cognitive radios (CR), Internet of things (IoT), machine to machine networks (M2M), and so on. This article aims for assisting the readers in clarifying the motivation and methodology of the various ML algorithms, so as to invoke them for hitherto unexplored services as well as scenarios of future wireless networks.Comment: 46 pages, 22 fig

    Transmission Scheduling Technique for A Propagation transfer using Sensing Protocol Under water Acoustic Wireless Sensor Networks.

    Get PDF
     As detector nodes square measure typically powered devices, the vital aspects to face concern the way to cut back the energy consumption of nodes, so the network lifespan may be extended to cheap times. Mobile underwater networks with acoustic communications square measure faced with many distinctive challenges like high transmission power utilization, giant propagation delay and node quality. In which Protocol multichip wireless network that uses multiple channel and dynamic channel choice technique. The comparison is conceded out by means that of analytical models, that square measure wont to confine the activities of a node that acts in line with either thought-about specifically for the underwater acoustic surroundings. The delay-aware opportunist transmission planning rule has been principally designed for underwater mobile detector networks. It uses passively obtained native info to reinforce the probabilities of synchronic transmissions whereas reducing collisions. Together with that, a straightforward performance mechanism that allows multiple outstanding packets at the sender facet, facultative multiple transmission sessions has been projected, that successively considerably improves the turnout. Every node learns neighboring node’s propagation delay info and their expected transmission schedules by passively overhearing packet transmissions through the institution of the new developed Macintosh protocol referred to as DOTS. This protocol principally aspires to attain higher channel utilization by harnessing each temporal and spatial recycle. The simulation results exemplify that DOTS provides truthful, medium access even with node quality. Thence this protocol additionally saves transmission energy by avoiding collisions whereas increasing turnout. It additionally achieves a turnout many times over that of the Slotted FAMA, whereas providing connected savings in energy. understanding that protocol is additional suited to given network setting and square measure expected to be of facilitate in planning novel protocol that presumably surmount presently out there solutions. Node monitor native underwater activities and report collected detector knowledge exploitation acoustic multi-hop routing to alternative mobile nodes for collaboration or just to a far off knowledge assortment center

    Physical Layer Service Integration in 5G: Potentials and Challenges

    Full text link
    High transmission rate and secure communication have been identified as the key targets that need to be effectively addressed by fifth generation (5G) wireless systems. In this context, the concept of physical-layer security becomes attractive, as it can establish perfect security using only the characteristics of wireless medium. Nonetheless, to further increase the spectral efficiency, an emerging concept, termed physical-layer service integration (PHY-SI), has been recognized as an effective means. Its basic idea is to combine multiple coexisting services, i.e., multicast/broadcast service and confidential service, into one integral service for one-time transmission at the transmitter side. This article first provides a tutorial on typical PHY-SI models. Furthermore, we propose some state-of-the-art solutions to improve the overall performance of PHY-SI in certain important communication scenarios. In particular, we highlight the extension of several concepts borrowed from conventional single-service communications, such as artificial noise (AN), eigenmode transmission etc., to the scenario of PHY-SI. These techniques are shown to be effective in the design of reliable and robust PHY-SI schemes. Finally, several potential research directions are identified for future work.Comment: 12 pages, 7 figure
    corecore