912 research outputs found

    Three-dimensional memory vectorization for high bandwidth media memory systems

    Get PDF
    Vector processors have good performance, cost and adaptability when targeting multimedia applications. However, for a significant number of media programs, conventional memory configurations fail to deliver enough memory references per cycle to feed the SIMD functional units. This paper addresses the problem of the memory bandwidth. We propose a novel mechanism suitable for 2-dimensional vector architectures and targeted at providing high effective bandwidth for SIMD memory instructions. The basis of this mechanism is the extension of the scope of vectorization at the memory level, so that 3-dimensional memory patterns can be fetched into a second-level register file. By fetching long blocks of data and by reusing 2-dimensional memory streams at this second-level register file, we obtain a significant increase in the effective memory bandwidth. As side benefits, the new 3-dimensional load instructions provide a high robustness to memory latency and a significant reduction of the cache activity, thus reducing power and energy requirements. At the investment of a 50% more area than a regular SIMD register file, we have measured and average speed-up of 13% and the potential for power savings in the L2 cache of a 30%.Peer ReviewedPostprint (published version

    Performance analysis and optimization of automatic speech recognition

    Get PDF
    © 2018 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes,creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.Fast and accurate Automatic Speech Recognition (ASR) is emerging as a key application for mobile devices. Delivering ASR on such devices is challenging due to the compute-intensive nature of the problem and the power constraints of embedded systems. In this paper, we provide a performance and energy characterization of Pocketsphinx, a popular toolset for ASR that targets mobile devices. We identify the computation of the Gaussian Mixture Model (GMM) as the main bottleneck, consuming more than 80 percent of the execution time. The CPI stack analysis shows that branches and main memory accesses are the main performance limiting factors for GMM computation. We propose several software-level optimizations driven by the power/performance analysis. Unlike previous proposals that trade accuracy for performance by reducing the number of Gaussians evaluated, we maintain accuracy and improve performance by effectively using the underlying CPU microarchitecture. First, we use a refactored implementation of the innermost loop of the GMM evaluation code to ameliorate the impact of branches. Second, we exploit the vector unit available on most modern CPUs to boost GMM computation, introducing a novel memory layout for storing the means and variances of the Gaussians in order to maximize the effectiveness of vectorization. Third, we compute the Gaussians for multiple frames in parallel, so means and variances can be fetched once in the on-chip caches and reused across multiple frames, significantly reducing memory bandwidth usage. We evaluate our optimizations using both hardware counters on real CPUs and simulations. Our experimental results show that the proposed optimizations provide 2.68x speedup over the baseline Pocketsphinx decoder on a high-end Intel Skylake CPU, while achieving 61 percent energy savings. On a modern ARM Cortex-A57 mobile processor our techniques improve performance by 1.85x, while providing 59 percent energy savings without any loss in the accuracy of the ASR system.Peer ReviewedPostprint (author's final draft

    Improving data prefetching efficacy in multimedia applications

    Full text link
    The workload of multimedia applications has a strong impact on cache memory performance, since the locality of memory references embedded in multimedia programs differs from that of traditional programs. In many cases, standard cache memory organization achieves poorer performance when used for multimedia. A widely-explored approach to improve cache performance is hardware prefetching, which allows the pre-loading of data in the cache before they are referenced. However, existing hardware prefetching approaches are unable to exploit the potential improvement in performance, since they are not tailored to multimedia locality. In this paper we propose novel effective approaches to hardware prefetching to be used in image processing programs for multimedia. Experimental results are reported for a suite of multimedia image processing programs including MPEG-2 decoding and encoding, convolution, thresholding, and edge chain coding

    MapReduce analysis for cloud-archived data

    Get PDF
    Public storage clouds have become a popular choice for archiving certain classes of enterprise data - for example, application and infrastructure logs. These logs contain sensitive information like IP addresses or user logins due to which regulatory and security requirements often require data to be encrypted before moved to the cloud. In order to leverage such data for any business value, analytics systems (e.g. Hadoop/MapReduce) first download data from these public clouds, decrypt it and then process it at the secure enterprise site. We propose VNCache: an efficient solution for MapReduceanalysis of such cloud-archived log data without requiring an apriori data transfer and loading into the local Hadoop cluster. VNcache dynamically integrates cloud-archived data into a virtual namespace at the enterprise Hadoop cluster. Through a seamless data streaming and prefetching model, Hadoop jobs can begin execution as soon as they are launched without requiring any apriori downloading. With VNcache's accurate pre-fetching and caching, jobs often run on a local cached copy of the data block significantly improving performance. When no longer needed, data is safely evicted from the enterprise cluster reducing the total storage footprint. Uniquely, VNcache is implemented with NO changes to the Hadoop application stack. © 2014 IEEE

    A survey of emerging architectural techniques for improving cache energy consumption

    Get PDF
    The search goes on for another ground breaking phenomenon to reduce the ever-increasing disparity between the CPU performance and storage. There are encouraging breakthroughs in enhancing CPU performance through fabrication technologies and changes in chip designs but not as much luck has been struck with regards to the computer storage resulting in material negative system performance. A lot of research effort has been put on finding techniques that can improve the energy efficiency of cache architectures. This work is a survey of energy saving techniques which are grouped on whether they save the dynamic energy, leakage energy or both. Needless to mention, the aim of this work is to compile a quick reference guide of energy saving techniques from 2013 to 2016 for engineers, researchers and students

    Evaluation of parallel H.264 decoding strategies for the Cell Broadband Engine

    Get PDF
    How to develop efficient and scalable parallel applications is the key challenge for emerging many-core architectures. We investigate this question by implementing and comparing two parallel H.264 decoders on the Cell architecture. It is expected that future many-cores will use a Cell-like local store memory hierarchy, rather than a non-scalable shared memory. The two implemented parallel algorithms, the Task Pool (TP) and the novel Ring-Line (RL) approach, both exploit macroblock-level parallelism. The TP implementation follows the master-slave paradigm and is very dynamic so that in theory perfect load balancing can be achieved. The RL approach is distributed and more predictable in the sense that the mapping of macroblocks to processing elements is fixed. This allows to better exploit data locality, to overlap communication with computation, and to reduce communication and synchronization overhead. While TP is more scalable in theory, the actual scalability favors RL. Using 16 SPEs, RL obtains a scalability of 12x, while TP achieves only 10.3x. More importantly, the absolute performance of RL is much higher. Using 16 SPEs, RL achieves a throughput of 139.6 frames per second (fps) while TP achieves only 76.6 fps. A large part of the additional performance advantage is due to hiding the memory latency. From the results we conclude that in order to fully leverage the performance of future many-cores, a centralized master should be avoided and the mapping of tasks to cores should be predictable in order to be able to hide the memory latency

    Load Value Approximation: Approaching the Ideal Memory Access Latency

    Get PDF
    Approximate computing recognizes that many applications can tolerate inexactness. These applications, which range from multimedia processing to machine learning, operate on inherently noisy and imprecise data. As a result, we can tradeoff some loss in output value integrity for improved processor performance and energy-efficiency. In this paper, we introduce load value approximation. In modern processors, upon a load miss in the private cache, the data must be retrieved from main memory or from the higher-level caches. These data accesses are costly both in terms of latency and energy. We implement load value approximators, which are hardware structures that learn value patterns and generate approximations of the data. The processor can then use these approximate data values to continue executing without incurring the high cost of accessing memory. We show that load value approximators can achieve high coverage while maintaining very low error in the application’s output. By exploiting the approximate nature of applications, we can draw closer to the ideal memory access latency. 1

    Effective data parallel computing on multicore processors

    Get PDF
    The rise of chip multiprocessing or the integration of multiple general purpose processing cores on a single chip (multicores), has impacted all computing platforms including high performance, servers, desktops, mobile, and embedded processors. Programmers can no longer expect continued increases in software performance without developing parallel, memory hierarchy friendly software that can effectively exploit the chip level multiprocessing paradigm of multicores. The goal of this dissertation is to demonstrate a design process for data parallel problems that starts with a sequential algorithm and ends with a high performance implementation on a multicore platform. Our design process combines theoretical algorithm analysis with practical optimization techniques. Our target multicores are quad-core processors from Intel and the eight-SPE IBM Cell B.E. Target applications include Matrix Multiplications (MM), Finite Difference Time Domain (FDTD), LU Decomposition (LUD), and Power Flow Solver based on Gauss-Seidel (PFS-GS) algorithms. These applications are popular computation methods in science and engineering problems and are characterized by unit-stride (MM, LUD, and PFS-GS) or 2-point stencil (FDTD) memory access pattern. The main contributions of this dissertation include a cache- and space-efficient algorithm model, integrated data pre-fetching and caching strategies, and in-core optimization techniques. Our multicore efficient implementations of the above described applications outperform nai¨ve parallel implementations by at least 2x and scales well with problem size and with the number of processing cores

    Mobile Map Browsers: Anticipated User Interaction for Data Pre-fetching

    Get PDF
    When browsing a graphical display of geospatial data on mobile devices, users typically change the displayed maps by panning, zooming in and out, or rotating the device. Limited storage space on mobile devices and slow wireless communications, however, impede the performance of these operations. To overcome the bottleneck that all map data to be displayed on the mobile device need to be downloaded on demand, this thesis investigates how anticipated user interactions affect intelligent pre-fetching so that an on-demand download session is extended incrementally. User interaction is defined as a set of map operations that each have corresponding effects on the spatial dataset required to generate the display. By anticipating user interaction based on past behavior and intuition on when waiting for data is acceptable, it is possible to device a set of strategies to better prepare the device with data for future use. Users that engage with interactive map displays for a variety of tasks, whether it be navigation, information browsing, or data collection, experience a dynamic display to accomplish their goal. With vehicular navigation, the display might update itself as a result of a GPS data stream reflecting movement through space. This movement is not random, especially as is the case of moving vehicles and, therefore, this thesis suggests that mobile map data could be pre-fetched in order to improve usability. Pre-fetching memory-demanding spatial data can benefit usability in several ways, but in particular it can (1) reduce latency when downloading data over wireless connections and (2) better prepare a device for situations where wireless internet connectivity is weak or intermittent. This thesis investigates mobile map caching and devises an algorithm for pre-fetching data on behalf of the application user. Two primary models are compared: isotropic (direction-independent) and anisotropic (direction-dependent) pre-fetching. A prefetching simulation is parameterized with many trajectories that vary in complexity (a metric of direction change within the trajectory) and it is shown that, although anisotropic pre-fetching typically results in a better pre-fetching accuracy, it is not ideal for all scenarios. This thesis suggests a combination of models to accommodate the significant variation in moving object trajectories. In addition, other methods for pre-fetching spatial data are proposed for future research

    Memory-processor co-scheduling in fixed priority systems

    Get PDF
    A major obstacle towards the adoption of multi-core platforms for real-time systems is given by the difficulties in characterizing the interference due to memory contention. The simple fact that multiple cores may simultaneously access shared memory and communication resources introduces a significant pessimism in the timing and schedulability analysis. To counter this problem, predictable execution models have been proposed splitting task executions into two consecutive phases: a memory phase in which the required instruction and data are pre-fetched to local memory (M-phase), and an execution phase in which the task is executed with no memory contention (C-phase). Decoupling memory and execution phases not only simplifies the timing analysis, but it also allows a more efficient (and predictable) pipelining of memory and execution phases through proper co-scheduling algorithms. In this paper, we take a further step towards the design of smart co-scheduling algorithms for sporadic real-time tasks complying with the M/C (memory-computation) model. We provide a theoretical framework that aims at tightly characterizing the schedulability improvement obtainable with the adopted M/C task model on a single-core systems. We identify a tight critical instant for M/C tasks scheduled with fixed priority, providing an exact response-time analysis with pseudo-polynomial complexity. We show in our experiments that a significant schedulability improvement may be obtained with respect to classic execution models, placing an important building block towards the design of more efficient partitioned multi-core systems
    • …
    corecore