4,424 research outputs found

    Practical classification of different moving targets using automotive radar and deep neural networks

    Get PDF
    In this work, the authors present results for classification of different classes of targets (car, single and multiple people, bicycle) using automotive radar data and different neural networks. A fast implementation of radar algorithms for detection, tracking, and micro-Doppler extraction is proposed in conjunction with the automotive radar transceiver TEF810X and microcontroller unit SR32R274 manufactured by NXP Semiconductors. Three different types of neural networks are considered, namely a classic convolutional network, a residual network, and a combination of convolutional and recurrent network, for different classification problems across the four classes of targets recorded. Considerable accuracy (close to 100% in some cases) and low latency of the radar pre-processing prior to classification (∼0.55 s to produce a 0.5 s long spectrogram) are demonstrated in this study, and possible shortcomings and outstanding issues are discussed

    Fast LIDAR-based Road Detection Using Fully Convolutional Neural Networks

    Full text link
    In this work, a deep learning approach has been developed to carry out road detection using only LIDAR data. Starting from an unstructured point cloud, top-view images encoding several basic statistics such as mean elevation and density are generated. By considering a top-view representation, road detection is reduced to a single-scale problem that can be addressed with a simple and fast fully convolutional neural network (FCN). The FCN is specifically designed for the task of pixel-wise semantic segmentation by combining a large receptive field with high-resolution feature maps. The proposed system achieved excellent performance and it is among the top-performing algorithms on the KITTI road benchmark. Its fast inference makes it particularly suitable for real-time applications

    Deep learning in remote sensing: a review

    Get PDF
    Standing at the paradigm shift towards data-intensive science, machine learning techniques are becoming increasingly important. In particular, as a major breakthrough in the field, deep learning has proven as an extremely powerful tool in many fields. Shall we embrace deep learning as the key to all? Or, should we resist a 'black-box' solution? There are controversial opinions in the remote sensing community. In this article, we analyze the challenges of using deep learning for remote sensing data analysis, review the recent advances, and provide resources to make deep learning in remote sensing ridiculously simple to start with. More importantly, we advocate remote sensing scientists to bring their expertise into deep learning, and use it as an implicit general model to tackle unprecedented large-scale influential challenges, such as climate change and urbanization.Comment: Accepted for publication IEEE Geoscience and Remote Sensing Magazin

    Am I Done? Predicting Action Progress in Videos

    Get PDF
    In this paper we deal with the problem of predicting action progress in videos. We argue that this is an extremely important task since it can be valuable for a wide range of interaction applications. To this end we introduce a novel approach, named ProgressNet, capable of predicting when an action takes place in a video, where it is located within the frames, and how far it has progressed during its execution. To provide a general definition of action progress, we ground our work in the linguistics literature, borrowing terms and concepts to understand which actions can be the subject of progress estimation. As a result, we define a categorization of actions and their phases. Motivated by the recent success obtained from the interaction of Convolutional and Recurrent Neural Networks, our model is based on a combination of the Faster R-CNN framework, to make frame-wise predictions, and LSTM networks, to estimate action progress through time. After introducing two evaluation protocols for the task at hand, we demonstrate the capability of our model to effectively predict action progress on the UCF-101 and J-HMDB datasets
    • …
    corecore