861 research outputs found

    Improving the scalability of parallel N-body applications with an event driven constraint based execution model

    Full text link
    The scalability and efficiency of graph applications are significantly constrained by conventional systems and their supporting programming models. Technology trends like multicore, manycore, and heterogeneous system architectures are introducing further challenges and possibilities for emerging application domains such as graph applications. This paper explores the space of effective parallel execution of ephemeral graphs that are dynamically generated using the Barnes-Hut algorithm to exemplify dynamic workloads. The workloads are expressed using the semantics of an Exascale computing execution model called ParalleX. For comparison, results using conventional execution model semantics are also presented. We find improved load balancing during runtime and automatic parallelism discovery improving efficiency using the advanced semantics for Exascale computing.Comment: 11 figure

    Beyond Dataflow

    Get PDF
    This paper presents some recent advanced dataflow architectures. While the dataflow concept offers the potential of high performance, the performance of an actual dataflow implementation can be restricted by a limited number of functional units, limited memory bandwidth, and the need to associatively match pending operations with available functional units. Since the early 1970s, there have been significant developments in both fundamental research and practical realizations of dataflow models of computation. In particular, there has been active research and development in multithreaded architectures that evolved from the dataflow model. Also some other techniques for combining control-flow and dataflow emerged, such as coarse-grain dataflow, dataflow with complex machine operations, RISC dataflow, and micro dataflow. These developments have also had certain impact on the conception of highperformance superscalar processors in the “post-RISC” era

    PARSECSs: Evaluating the impact of task parallelism in the PARSEC benchmark suite

    Get PDF
    In this work, we show how parallel applications can be implemented efficiently using task parallelism. We also evaluate the benefits of such parallel paradigm with respect to other approaches. We use the PARSEC benchmark suite as our test bed, which includes applications representative of a wide range of domains from HPC to desktop and server applications. We adopt different parallelization techniques, tailored to the needs of each application, to fully exploit the task-based model. Our evaluation shows that task parallelism achieves better performance than thread-based parallelization models, such as Pthreads. Our experimental results show that we can obtain scalability improvements up to 42% on a 16-core system and code size reductions up to 81%. Such reductions are achieved by removing from the source code application specific schedulers or thread pooling systems and transferring these responsibilities to the runtime system software.This work has been partially supported by the European Research Council under the European Union 7th FP, ERC Grant Agreement number 321253, by the Spanish Ministry of Science and Innovation under grant TIN2012-34557, by the Severo Ochoa Program, awarded by the Spanish Government, under grant SEV-2011-00067 and by the HiPEAC Network of Excellence. M. Moreto has been partially supported by the Ministry of Economy and Competitiveness under Juan de la Cierva post-doctoral fellowship number JCI-2012-15047, and M. Casas is supported by the Secretary for Universities and Research of the Ministry of Economy and Knowledge of the Government of Catalonia and the Co-fund programme of the Marie Curie Actions of the 7th R&D Framework Programme of the European Union (Contract 2013 BP B 00243). Finally, the authors are grateful to the reviewers for their valuable comments, to the people from the Programming Models Group at BSC for their technical support, to the RoMoL team, and to Xavier Teruel, Roger Ferrer and Paul Caheny for their help in this work.Peer ReviewedPostprint (author's final draft
    corecore