1,234 research outputs found

    Improvement of the sensory and autonomous capability of robots through olfaction: the IRO Project

    Get PDF
    Proyecto de Excelencia Junta de AndalucĂ­a TEP2012-530Olfaction is a valuable source of information about the environment that has not been su ciently exploited in mobile robotics yet. Certainly, odor information can contribute to other sensing modalities, e.g. vision, to successfully accomplish high-level robot activities, such as task planning or execution in human environments. This paper describes the developments carried out in the scope of the IRO project, which aims at making progress in this direction by investigating mechanisms that exploit odor information (usually coming in the form of the type of volatile and its concentration) in problems like object recognition and scene-activity understanding. A distinctive aspect of this research is the special attention paid to the role of semantics within the robot perception and decisionmaking processes. The results of the IRO project have improved the robot capabilities in terms of efciency, autonomy and usefulness.Universidad de MĂĄlaga. Campus de Excelencia Internacional AndalucĂ­a Tec

    Challenges and opportunities of context-aware information access

    Get PDF
    Ubiquitous computing environments embedding a wide range of pervasive computing technologies provide a challenging and exciting new domain for information access. Individuals working in these environments are increasingly permanently connected to rich information resources. An appealing opportunity of these environments is the potential to deliver useful information to individuals either from their previous information experiences or external sources. This information should enrich their life experiences or make them more effective in their endeavours. Information access in ubiquitous computing environments can be made "context-aware" by exploiting the wide range context data available describing the environment, the searcher and the information itself. Realizing such a vision of reliable, timely and appropriate identification and delivery of information in this way poses numerous challenges. A central theme in achieving context-aware information access is the combination of information retrieval with multiple dimensions of available context data. Potential context data sources, include the user's current task, inputs from environmental and biometric sensors, associated with the user's current context, previous contexts, and document context, which can be exploited using a variety of technologies to create new and exciting possibilities for information access

    Survey and Systematization of Secure Device Pairing

    Full text link
    Secure Device Pairing (SDP) schemes have been developed to facilitate secure communications among smart devices, both personal mobile devices and Internet of Things (IoT) devices. Comparison and assessment of SDP schemes is troublesome, because each scheme makes different assumptions about out-of-band channels and adversary models, and are driven by their particular use-cases. A conceptual model that facilitates meaningful comparison among SDP schemes is missing. We provide such a model. In this article, we survey and analyze a wide range of SDP schemes that are described in the literature, including a number that have been adopted as standards. A system model and consistent terminology for SDP schemes are built on the foundation of this survey, which are then used to classify existing SDP schemes into a taxonomy that, for the first time, enables their meaningful comparison and analysis.The existing SDP schemes are analyzed using this model, revealing common systemic security weaknesses among the surveyed SDP schemes that should become priority areas for future SDP research, such as improving the integration of privacy requirements into the design of SDP schemes. Our results allow SDP scheme designers to create schemes that are more easily comparable with one another, and to assist the prevention of persisting the weaknesses common to the current generation of SDP schemes.Comment: 34 pages, 5 figures, 3 tables, accepted at IEEE Communications Surveys & Tutorials 2017 (Volume: PP, Issue: 99

    SCAMPI: Service platform for soCial Aware Mobile and Pervasive computIng

    Get PDF
    Allowing mobile users to find and access resources available in the surrounding environment opportunistically via their smart devices could enable them to create and use a rich set of services. Such services can go well beyond what is possible for a mobile phone acting alone. In essense, access to diverse resources such as raw computational power, social networking relationships, or sensor readings across a set of different devices calls for distributed task execution. In this paper, we discuss the SCAMPI architecture designed to support distributed task execution in opportunistic pervasive networks. The key elements of the architecture include leveraging human social behavior for efficient opportunistic interaction between a variety of sensors, personal communication devices and resources embedded in the local environment. The SCAMPI architecture abstracts resources asservice components following a service-oriented model. This enables composing rich applications that utilize a collection of service components available in the environment

    GNSS Spoofing Detection via Opportunistic IRIDIUM Signals

    Full text link
    In this paper, we study the privately-own IRIDIUM satellite constellation, to provide a location service that is independent of the GNSS. In particular, we apply our findings to propose a new GNSS spoofing detection solution, exploiting unencrypted IRIDIUM Ring Alert (IRA) messages that are broadcast by IRIDIUM satellites. We firstly reverse-engineer many parameters of the IRIDIUM satellite constellation, such as the satellites speed, packet interarrival times, maximum satellite coverage, satellite pass duration, and the satellite beam constellation, to name a few. Later, we adopt the aforementioned statistics to create a detailed model of the satellite network. Subsequently, we propose a solution to detect unintended deviations of a target user from his path, due to GNSS spoofing attacks. We show that our solution can be used efficiently and effectively to verify the position estimated from standard GNSS satellite constellation, and we provide constraints and parameters to fit several application scenarios. All the results reported in this paper, while showing the quality and viability of our proposal, are supported by real data. In particular, we have collected and analyzed hundreds of thousands of IRA messages, thanks to a measurement campaign lasting several days. All the collected data (1000+1000+ hours) have been made available to the research community. Our solution is particularly suitable for unattended scenarios such as deserts, rural areas, or open seas, where standard spoofing detection techniques resorting to crowd-sourcing cannot be used due to deployment limitations. Moreover, contrary to competing solutions, our approach does not resort to physical-layer information, dedicated hardware, or multiple receiving stations, while exploiting only a single receiving antenna and publicly-available IRIDIUM transmissions. Finally, novel research directions are also highlighted.Comment: Accepted for the 13th Conference on Security and Privacy in Wireless and Mobile Networks (WISEC), 202
    • 

    corecore