791 research outputs found

    Exceeding Conservative Limits: A Consolidated Analysis on Modern Hardware Margins

    Get PDF
    Modern large-scale computing systems (data centers, supercomputers, cloud and edge setups and high-end cyber-physical systems) employ heterogeneous architectures that consist of multicore CPUs, general-purpose many-core GPUs, and programmable FPGAs. The effective utilization of these architectures poses several challenges, among which a primary one is power consumption. Voltage reduction is one of the most efficient methods to reduce power consumption of a chip. With the galloping adoption of hardware accelerators (i.e., GPUs and FPGAs) in large datacenters and other large-scale computing infrastructures, a comprehensive evaluation of the safe voltage reduction levels for each different chip can be employed for efficient reduction of the total power. We present a survey of recent studies in voltage margins reduction at the system level for modern CPUs, GPUs and FPGAs. The pessimistic voltage guardbands inserted by the silicon vendors can be exploited in all devices for significant power savings. On average, voltage reduction can reach 12% in multicore CPUs, 20% in manycore GPUs and 39% in FPGAs.Comment: Accepted for publication in IEEE Transactions on Device and Materials Reliabilit

    On the use of embedded debug features for permanent and transient fault resilience in microprocessors

    Get PDF
    Microprocessor-based systems are employed in an increasing number of applications where dependability is a major constraint. For this reason detecting faults arising during normal operation while introducing the least possible penalties is a main concern. Different forms of redundancy have been employed to ensure error-free behavior, while error detection mechanisms can be employed where some detection latency is tolerated. However, the high complexity and the low observability of microprocessors internal resources make the identification of adequate on-line error detection strategies a very challenging task, which can be tackled at circuit or system level. Concerning system-level strategies, a common limitation is in the mechanism used to monitor program execution and then detect errors as soon as possible, so as to reduce their impact on the application. In this work, an on-line error detection approach based on the reuse of available debugging infrastructures is proposed. The approach can be applied to different system architectures profiting from the debug trace port available in most of current microprocessors to observe possible misbehaviors. Two microprocessors have been used to study the applicability of the solution. LEON3 and ARM7TDMI. Results show that the presented fault detection technique enhances observability and thus error detection abilities in microprocessor-based systems without requiring modifications on the core architecture

    Trading-off reliability and performance in FPGA-based reconfigurable heterogeneous systems

    Get PDF
    Recent years have witnessed the rapid growth of heterogeneous systems, composed of CPUs and hardware accelerators, to face up the constant increase of computational performance demand of digital systems. In this scenario, FPGAs offer the possibility to implement high performance reconfigurable accelerators, able to speed up the intrinsically parallel portions of applications. The study of reconfigurable heterogeneous systems is still maturing and, while some contributions about performance and power consumption are available, in literature there are few works addressing reliability. This paper analyzes reconfigurable heterogeneous systems in presence of permanent faults occurring in the FPGA. In this context, a reconfigurable heterogeneous architecture, including a Run Time Manager responsible for the communication of software tasks and the FPGA, the scheduling and the placement of hardware tasks, is presented. In addition, the paper introduces a reconfigurable heterogeneous system simulator for the proposed architecture. This simulator is able to evaluate during the design phase the degradation of the system performance due to permanent faults and allows to explore the design space dimensions efficiently

    Robust configurable system design with built-in self-healing

    Get PDF
    The new generations of SRAM-based FPGA (Field Programmable Gate Array) devices, built on nanometre technology, are the preferred choice for the implementation of reconfigurable computing platforms. However, their vulnerability to hard and soft errors is a major weakness to robust system design based on FPGAs. In this paper, a novel Built-In Self-Healing (BISH) methodology, based on modular redundancy and on selfreconfiguration, is proposed. A soft microprocessor core implemented in the FPGA is responsible for the management and execution of all the BISH procedures. Fault detection and diagnosis is followed by repairing actions, taking advantage of the self-configuration features. Meanwhile, modular redundancy assures that the system still works correctly. This approach leads to a robust system design able to assure high reliability, availability and data integrity

    Securing Critical Infrastructures

    Get PDF
    1noL'abstract è presente nell'allegato / the abstract is in the attachmentopen677. INGEGNERIA INFORMATInoopenCarelli, Albert

    Fault Tolerant Electronic System Design

    Get PDF
    Due to technology scaling, which means reduced transistor size, higher density, lower voltage and more aggressive clock frequency, VLSI devices may become more sensitive against soft errors. Especially for those devices used in safety- and mission-critical applications, dependability and reliability are becoming increasingly important constraints during the development of system on/around them. Other phenomena (e.g., aging and wear-out effects) also have negative impacts on reliability of modern circuits. Recent researches show that even at sea level, radiation particles can still induce soft errors in electronic systems. On one hand, processor-based system are commonly used in a wide variety of applications, including safety-critical and high availability missions, e.g., in the automotive, biomedical and aerospace domains. In these fields, an error may produce catastrophic consequences. Thus, dependability is a primary target that must be achieved taking into account tight constraints in terms of cost, performance, power and time to market. With standards and regulations (e.g., ISO-26262, DO-254, IEC-61508) clearly specify the targets to be achieved and the methods to prove their achievement, techniques working at system level are particularly attracting. On the other hand, Field Programmable Gate Array (FPGA) devices are becoming more and more attractive, also in safety- and mission-critical applications due to the high performance, low power consumption and the flexibility for reconfiguration they provide. Two types of FPGAs are commonly used, based on their configuration memory cell technology, i.e., SRAM-based and Flash-based FPGA. For SRAM-based FPGAs, the SRAM cells of the configuration memory highly susceptible to radiation induced effects which can leads to system failure; and for Flash-based FPGAs, even though their non-volatile configuration memory cells are almost immune to Single Event Upsets induced by energetic particles, the floating gate switches and the logic cells in the configuration tiles can still suffer from Single Event Effects when hit by an highly charged particle. So analysis and mitigation techniques for Single Event Effects on FPGAs are becoming increasingly important in the design flow especially when reliability is one of the main requirements

    Embedded electronic systems driven by run-time reconfigurable hardware

    Get PDF
    Abstract This doctoral thesis addresses the design of embedded electronic systems based on run-time reconfigurable hardware technology –available through SRAM-based FPGA/SoC devices– aimed at contributing to enhance the life quality of the human beings. This work does research on the conception of the system architecture and the reconfiguration engine that provides to the FPGA the capability of dynamic partial reconfiguration in order to synthesize, by means of hardware/software co-design, a given application partitioned in processing tasks which are multiplexed in time and space, optimizing thus its physical implementation –silicon area, processing time, complexity, flexibility, functional density, cost and power consumption– in comparison with other alternatives based on static hardware (MCU, DSP, GPU, ASSP, ASIC, etc.). The design flow of such technology is evaluated through the prototyping of several engineering applications (control systems, mathematical coprocessors, complex image processors, etc.), showing a high enough level of maturity for its exploitation in the industry.Resumen Esta tesis doctoral abarca el diseño de sistemas electrónicos embebidos basados en tecnología hardware dinámicamente reconfigurable –disponible a través de dispositivos lógicos programables SRAM FPGA/SoC– que contribuyan a la mejora de la calidad de vida de la sociedad. Se investiga la arquitectura del sistema y del motor de reconfiguración que proporcione a la FPGA la capacidad de reconfiguración dinámica parcial de sus recursos programables, con objeto de sintetizar, mediante codiseño hardware/software, una determinada aplicación particionada en tareas multiplexadas en tiempo y en espacio, optimizando así su implementación física –área de silicio, tiempo de procesado, complejidad, flexibilidad, densidad funcional, coste y potencia disipada– comparada con otras alternativas basadas en hardware estático (MCU, DSP, GPU, ASSP, ASIC, etc.). Se evalúa el flujo de diseño de dicha tecnología a través del prototipado de varias aplicaciones de ingeniería (sistemas de control, coprocesadores aritméticos, procesadores de imagen, etc.), evidenciando un nivel de madurez viable ya para su explotación en la industria.Resum Aquesta tesi doctoral està orientada al disseny de sistemes electrònics empotrats basats en tecnologia hardware dinàmicament reconfigurable –disponible mitjançant dispositius lògics programables SRAM FPGA/SoC– que contribueixin a la millora de la qualitat de vida de la societat. S’investiga l’arquitectura del sistema i del motor de reconfiguració que proporcioni a la FPGA la capacitat de reconfiguració dinàmica parcial dels seus recursos programables, amb l’objectiu de sintetitzar, mitjançant codisseny hardware/software, una determinada aplicació particionada en tasques multiplexades en temps i en espai, optimizant així la seva implementació física –àrea de silici, temps de processat, complexitat, flexibilitat, densitat funcional, cost i potència dissipada– comparada amb altres alternatives basades en hardware estàtic (MCU, DSP, GPU, ASSP, ASIC, etc.). S’evalúa el fluxe de disseny d’aquesta tecnologia a través del prototipat de varies aplicacions d’enginyeria (sistemes de control, coprocessadors aritmètics, processadors d’imatge, etc.), demostrant un nivell de maduresa viable ja per a la seva explotació a la indústria

    Toward Fault-Tolerant Applications on Reconfigurable Systems-on-Chip

    Get PDF
    L'abstract è presente nell'allegato / the abstract is in the attachmen
    corecore