479 research outputs found

    Real-Time Sensor Networks and Systems for the Industrial IoT

    Get PDF
    The Industrial Internet of Things (Industrial IoT—IIoT) has emerged as the core construct behind the various cyber-physical systems constituting a principal dimension of the fourth Industrial Revolution. While initially born as the concept behind specific industrial applications of generic IoT technologies, for the optimization of operational efficiency in automation and control, it quickly enabled the achievement of the total convergence of Operational (OT) and Information Technologies (IT). The IIoT has now surpassed the traditional borders of automation and control functions in the process and manufacturing industry, shifting towards a wider domain of functions and industries, embraced under the dominant global initiatives and architectural frameworks of Industry 4.0 (or Industrie 4.0) in Germany, Industrial Internet in the US, Society 5.0 in Japan, and Made-in-China 2025 in China. As real-time embedded systems are quickly achieving ubiquity in everyday life and in industrial environments, and many processes already depend on real-time cyber-physical systems and embedded sensors, the integration of IoT with cognitive computing and real-time data exchange is essential for real-time analytics and realization of digital twins in smart environments and services under the various frameworks’ provisions. In this context, real-time sensor networks and systems for the Industrial IoT encompass multiple technologies and raise significant design, optimization, integration and exploitation challenges. The ten articles in this Special Issue describe advances in real-time sensor networks and systems that are significant enablers of the Industrial IoT paradigm. In the relevant landscape, the domain of wireless networking technologies is centrally positioned, as expected

    Artificial Intelligence for Small Satellites Mission Autonomy

    Get PDF
    Space mission engineering has always been recognized as a very challenging and innovative branch of engineering: since the beginning of the space race, numerous milestones, key successes and failures, improvements, and connections with other engineering domains have been reached. Despite its relative young age, space engineering discipline has not gone through homogeneous times: alternation of leading nations, shifts in public and private interests, allocations of resources to different domains and goals are all examples of an intrinsic dynamism that characterized this discipline. The dynamism is even more striking in the last two decades, in which several factors contributed to the fervour of this period. Two of the most important ones were certainly the increased presence and push of the commercial and private sector and the overall intent of reducing the size of the spacecraft while maintaining comparable level of performances. A key example of the second driver is the introduction, in 1999, of a new category of space systems called CubeSats. Envisioned and designed to ease the access to space for universities, by standardizing the development of the spacecraft and by ensuring high probabilities of acceptance as piggyback customers in launches, the standard was quickly adopted not only by universities, but also by agencies and private companies. CubeSats turned out to be a disruptive innovation, and the space mission ecosystem was deeply changed by this. New mission concepts and architectures are being developed: CubeSats are now considered as secondary payloads of bigger missions, constellations are being deployed in Low Earth Orbit to perform observation missions to a performance level considered to be only achievable by traditional, fully-sized spacecraft. CubeSats, and more in general the small satellites technology, had to overcome important challenges in the last few years that were constraining and reducing the diffusion and adoption potential of smaller spacecraft for scientific and technology demonstration missions. Among these challenges were: the miniaturization of propulsion technologies, to enable concepts such as Rendezvous and Docking, or interplanetary missions; the improvement of telecommunication state of the art for small satellites, to enable the downlink to Earth of all the data acquired during the mission; and the miniaturization of scientific instruments, to be able to exploit CubeSats in more meaningful, scientific, ways. With the size reduction and with the consolidation of the technology, many aspects of a space mission are reduced in consequence: among these, costs, development and launch times can be cited. An important aspect that has not been demonstrated to scale accordingly is operations: even for small satellite missions, human operators and performant ground control centres are needed. In addition, with the possibility of having constellations or interplanetary distributed missions, a redesign of how operations are management is required, to cope with the innovation in space mission architectures. The present work has been carried out to address the issue of operations for small satellite missions. The thesis presents a research, carried out in several institutions (Politecnico di Torino, MIT, NASA JPL), aimed at improving the autonomy level of space missions, and in particular of small satellites. The key technology exploited in the research is Artificial Intelligence, a computer science branch that has gained extreme interest in research disciplines such as medicine, security, image recognition and language processing, and is currently making its way in space engineering as well. The thesis focuses on three topics, and three related applications have been developed and are here presented: autonomous operations by means of event detection algorithms, intelligent failure detection on small satellite actuator systems, and decision-making support thanks to intelligent tradespace exploration during the preliminary design of space missions. The Artificial Intelligent technologies explored are: Machine Learning, and in particular Neural Networks; Knowledge-based Systems, and in particular Fuzzy Logics; Evolutionary Algorithms, and in particular Genetic Algorithms. The thesis covers the domain (small satellites), the technology (Artificial Intelligence), the focus (mission autonomy) and presents three case studies, that demonstrate the feasibility of employing Artificial Intelligence to enhance how missions are currently operated and designed

    Zuverlässige und Energieeffiziente gemischt-kritische Echtzeit On-Chip Systeme

    Get PDF
    Multi- and many-core embedded systems are increasingly becoming the target for many applications that require high performance under varying conditions. A resulting challenge is the control, and reliable operation of such complex multiprocessing architectures under changes, e.g., high temperature and degradation. In mixed-criticality systems where many applications with varying criticalities are consolidated on the same execution platform, fundamental isolation requirements to guarantee non-interference of critical functions are crucially important. While Networks-on-Chip (NoCs) are the prevalent solution to provide scalable and efficient interconnects for the multiprocessing architectures, their associated energy consumption has immensely increased. Specifically, hard real-time NoCs must manifest limited energy consumption as thermal runaway in such a core shared resource jeopardizes the whole system guarantees. Thus, dynamic energy management of NoCs, as opposed to the related work static solutions, is highly necessary to save energy and decrease temperature, while preserving essential temporal requirements. In this thesis, we introduce a centralized management to provide energy-aware NoCs for hard real-time systems. The design relies on an energy control network, developed on top of an existing switch arbitration network to allow isolation between energy optimization and data transmission. The energy control layer includes local units called Power-Aware NoC controllers that dynamically optimize NoC energy depending on the global state and applications’ temporal requirements. Furthermore, to adapt to abnormal situations that might occur in the system due to degradation, we extend the concept of NoC energy control to include the entire system scope. That is, online resource management employing hierarchical control layers to treat system degradation (imminent core failures) is supported. The mechanism applies system reconfiguration that involves workload migration. For mixed-criticality systems, it allows flexible boundaries between safety-critical and non-critical subsystems to safely apply the reconfiguration, preserving fundamental safety requirements and temporal predictability. Simulation and formal analysis-based experiments on various realistic usecases and benchmarks are conducted showing significant improvements in NoC energy-savings and in treatment of system degradation for mixed-criticality systems improving dependability over the status quo.Eingebettete Many- und Multi-core-Systeme werden zunehmend das Ziel für Anwendungen, die hohe Anfordungen unter unterschiedlichen Bedinungen haben. Für solche hochkomplexed Multi-Prozessor-Systeme ist es eine grosse Herausforderung zuverlässigen Betrieb sicherzustellen, insbesondere wenn sich die Umgebungseinflüsse verändern. In Systeme mit gemischter Kritikalität, in denen viele Anwendungen mit unterschiedlicher Kritikalität auf derselben Ausführungsplattform bedient werden müssen, sind grundlegende Isolationsanforderungen zur Gewährleistung der Nichteinmischung kritischer Funktionen von entscheidender Bedeutung. Während On-Chip Netzwerke (NoCs) häufig als skalierbare Verbindung für die Multiprozessor-Architekturen eingesetzt werden, ist der damit verbundene Energieverbrauch immens gestiegen. Daher sind dynamische Plattformverwaltungen, im Gegensatz zu den statischen, zwingend notwendig, um ein System an die oben genannten Veränderungen anzupassen und gleichzeitig Timing zu gewährleisten. In dieser Arbeit entwickeln wir energieeffiziente NoCs für harte Echtzeitsysteme. Das Design basiert auf einem Energiekontrollnetzwerk, das auf einem bestehenden Switch-Arbitration-Netzwerk entwickelt wurde, um eine Isolierung zwischen Energieoptimierung und Datenübertragung zu ermöglichen. Die Energiesteuerungsschicht umfasst lokale Einheiten, die als Power-Aware NoC-Controllers bezeichnet werden und die die NoC-Energie in Abhängigkeit vom globalen Zustand und den zeitlichen Anforderungen der Anwendungen optimieren. Darüber hinaus wird das Konzept der NoC-Energiekontrolle zur Anpassung an Anomalien, die aufgrund von Abnutzung auftreten können, auf den gesamten Systemumfang ausgedehnt. Online- Ressourcenverwaltungen, die hierarchische Kontrollschichten zur Behandlung Abnutzung (drohender Kernausfälle) einsetzen, werden bereitgestellt. Bei Systemen mit gemischter Kritikalität erlaubt es flexible Grenzen zwischen sicherheitskritischen und unkritischen Subsystemen, um die Rekonfiguration sicher anzuwenden, wobei grundlegende Sicherheitsanforderungen erhalten bleiben und Timing Vorhersehbarkeit. Experimente werden auf der Basis von Simulationen und formalen Analysen zu verschiedenen realistischen Anwendungsfallen und Benchmarks durchgeführt, die signifikanten Verbesserungen bei On-Chip Netzwerke-Energieeinsparungen und bei der Behandlung von Abnutzung für Systeme mit gemischter Kritikalität zur Verbesserung die Systemstabilität gegenüber dem bisherigen Status quo zeigen

    The 1993 Goddard Conference on Space Applications of Artificial Intelligence

    Get PDF
    This publication comprises the papers presented at the 1993 Goddard Conference on Space Applications of Artificial Intelligence held at the NASA/Goddard Space Flight Center, Greenbelt, MD on May 10-13, 1993. The purpose of this annual conference is to provide a forum in which current research and development directed at space applications of artificial intelligence can be presented and discussed

    Multi-signal Anomaly Detection for Real-Time Embedded Systems

    Get PDF
    This thesis presents MuSADET, an anomaly detection framework targeting timing anomalies found in event traces from real-time embedded systems. The method leverages stationary event generators, signal processing, and distance metrics to classify inter-arrival time sequences as normal/anomalous. Experimental evaluation of traces collected from two real-time embedded systems provides empirical evidence of MuSADET’s anomaly detection performance. MuSADET is appropriate for embedded systems, where many event generators are intrinsically recurrent and generate stationary sequences of timestamp. To find timinganomalies, MuSADET compares the frequency domain features of an unknown trace to a normal model trained from well-behaved executions of the system. Each signal in the analysis trace receives a normal/anomalous score, which can help engineers isolate the source of the anomaly. Empirical evidence of anomaly detection performed on traces collected from an industrygrade hexacopter and the Controller Area Network (CAN) bus deployed in a real vehicle demonstrates the feasibility of the proposed method. In all case studies, anomaly detection did not require an anomaly model while achieving high detection rates. For some of the studied scenarios, the true positive detection rate goes above 99 %, with false-positive rates below one %. The visualization of classification scores shows that some timing anomalies can propagate to multiple signals within the system. Comparison to the similar method, Signal Processing for Trace Analysis (SiPTA), indicates that MuSADET is superior in detection performance and provides complementary information that can help link anomalies to the process where they occurred

    2nd Symposium on Management of Future motorway and urban Traffic Systems (MFTS 2018): Booklet of abstracts: Ispra, 11-12 June 2018

    Get PDF
    The Symposium focuses on future traffic management systems, covering the subjects of traffic control, estimation, and modelling of motorway and urban networks, with particular emphasis on the presence of advanced vehicle communication and automation technologies. As connectivity and automation are being progressively introduced in our transport and mobility systems, there is indeed a growing need to understand the implications and opportunities for an enhanced traffic management as well as to identify innovative ways and tools to optimise traffic efficiency. In particular the debate on centralised versus decentralised traffic management in the presence of connected and automated vehicles has started attracting the attention of the research community. In this context, the Symposium provides a remarkable opportunity to share novel ideas and discuss future research directions.JRC.C.4-Sustainable Transpor

    Leveraging Large Language Models (LLMs) for Process Mining (Technical Report)

    Full text link
    This technical report describes the intersection of process mining and large language models (LLMs), specifically focusing on the abstraction of traditional and object-centric process mining artifacts into textual format. We introduce and explore various prompting strategies: direct answering, where the large language model directly addresses user queries; multi-prompt answering, which allows the model to incrementally build on the knowledge obtained through a series of prompts; and the generation of database queries, facilitating the validation of hypotheses against the original event log. Our assessment considers two large language models, GPT-4 and Google's Bard, under various contextual scenarios across all prompting strategies. Results indicate that these models exhibit a robust understanding of key process mining abstractions, with notable proficiency in interpreting both declarative and procedural process models. In addition, we find that both models demonstrate strong performance in the object-centric setting, which could significantly propel the advancement of the object-centric process mining discipline. Additionally, these models display a noteworthy capacity to evaluate various concepts of fairness in process mining. This opens the door to more rapid and efficient assessments of the fairness of process mining event logs, which has significant implications for the field. The integration of these large language models into process mining applications may open new avenues for exploration, innovation, and insight generation in the field

    A Scalable Edge-Centric System Design for Camera Networks to aid Situation Awareness Applications

    Get PDF
    The ubiquity of cameras in our environment coupled with advances in computer vision and machine learning has enabled several novel applications combining sensing, processing, and actuation. Often referred to as situation awareness applications, they span a variety of domains including safety (e.g., surveillance), retail (e.g., drone delivery), and transportation (e.g., assisted/autonomous driving). There is a perfect storm of technology enablers that have come together making it a ripe time for realizing a smart camera system at the edge of the network to aid situation awareness applications. There are two types of smart camera systems, live processing at ingestion time and post-mortem video analysis. Live processing features a more timely response when the queries are known ahead of time. At the same time, post-mortem analysis fits the exploratory analysis where the queries (or the parameters of queries) are not known in advance. Various situation awareness applications can benefit from either type of the smart camera system or even both. There is prior art which are mostly standalone techniques to facilitate camera processing. For example, efficient live camera processing frameworks feature the partition of the video analysis tasks and the placement of these tasks across Edge and Cloud. Databases for building efficient query processing systems on archived videos feature modern techniques (e.g., filters) for accelerating video analytics. This dissertation research has been looking into both types of smart camera systems (i.e., live processing at ingestion time and postmortem exploratory video analysis) for various situation awareness applications. Precisely, this dissertation seeks to fill the void left by prior art by asking these questions: 1. What are the necessary system components for a geo-distributed camera system and how best to architect them for scalability? 2. Given the limited resource capacity of the edge, how best to orchestrate the resources for live camera processing at video ingestion time? 3. How best to leverage traditional database management optimization techniques for post-mortem video analysis? To aid various situation awareness applications, this dissertation proposes a “Scalable-by-Design” approach to designing edge-centric systems for camera networks, efficient resource orchestration for live camera processing at ingestion time, and a postmortem video engine featuring reuse for exploratory video analytics in a scalable edge-centric system for camera networks.Ph.D
    • …
    corecore