381 research outputs found

    Throughput analysis of ALOHA with cooperative diversity

    Get PDF
    Cooperative transmissions emulate multi-antenna systems and can improve the quality of signal reception. In this paper, we propose and analyze a cross layer random access scheme, C-ALOHA, that enables cooperative transmissions in the context of ALOHA system. Our analysis shows that over a fading channel C-ALOHA can improve the throughput by 30%, as compared to standard ALOHA protocol

    Distributed Game Theoretic Optimization and Management of Multichannel ALOHA Networks

    Full text link
    The problem of distributed rate maximization in multi-channel ALOHA networks is considered. First, we study the problem of constrained distributed rate maximization, where user rates are subject to total transmission probability constraints. We propose a best-response algorithm, where each user updates its strategy to increase its rate according to the channel state information and the current channel utilization. We prove the convergence of the algorithm to a Nash equilibrium in both homogeneous and heterogeneous networks using the theory of potential games. The performance of the best-response dynamic is analyzed and compared to a simple transmission scheme, where users transmit over the channel with the highest collision-free utility. Then, we consider the case where users are not restricted by transmission probability constraints. Distributed rate maximization under uncertainty is considered to achieve both efficiency and fairness among users. We propose a distributed scheme where users adjust their transmission probability to maximize their rates according to the current network state, while maintaining the desired load on the channels. We show that our approach plays an important role in achieving the Nash bargaining solution among users. Sequential and parallel algorithms are proposed to achieve the target solution in a distributed manner. The efficiencies of the algorithms are demonstrated through both theoretical and simulation results.Comment: 34 pages, 6 figures, accepted for publication in the IEEE/ACM Transactions on Networking, part of this work was presented at IEEE CAMSAP 201

    Exploiting the Capture Effect to Enhance RACH Performance in Cellular-Based M2M Communications

    Get PDF
    Cellular-based machine-to-machine (M2M) communication is expected to facilitate services for the Internet of Things (IoT). However, because cellular networks are designed for human users, they have some limitations. Random access channel (RACH) congestion caused by massive access from M2M devices is one of the biggest factors hindering cellular-based M2M services because the RACH congestion causes random access (RA) throughput degradation and connection failures to the devices. In this paper, we show the possibility exploiting the capture effects, which have been known to have a positive impact on the wireless network system, on RA procedure for improving the RA performance of M2M devices. For this purpose, we analyze an RA procedure using a capture model. Through this analysis, we examine the effects of capture on RA performance and propose an Msg3 power-ramping (Msg3 PR) scheme to increase the capture probability (thereby increasing the RA success probability) even when severe RACH congestion problem occurs. The proposed analysis models are validated using simulations. The results show that the proposed scheme, with proper parameters, further improves the RA throughput and reduces the connection failure probability, by slightly increasing the energy consumption. Finally, we demonstrate the effects of coexistence with other RA-related schemes through simulation results

    Optimised protocols for time-critical applications and internetworking in wehicular ad-hoc networks

    Get PDF
    Vehicular ad-hoc networks (VANETs) that enable communication among vehicles and between vehicles and unmanned aerial vehicles (UAVs) and cellular base stations have recently attracted significant interest from the research community, due to the wide range of practical applications they can facilitate (e.g., road safety, traffic management and rescue missions). Despite this increased research activity, the high vehicle mobility in a VANET raises concerns regarding the robustness and adaptiveness of such networks to support time-critical applications and internetworking. In this thesis, as a first step toward the design of efficient MAC protocol to support time-critical applications and internetworking, we show that it is indeed possible to follow the dynamics of a network and consequently adapt the transmission probability of the Aloha protocol to reduce the interference and maximise the single-hop throughput between adjacent nodes. Extensive simulation validates the proposed analytical model, which thus can serve as a promising tool to improve VANETs performance. By exploiting the parallel between the CSMA/CA and Aloha performance models, the optimal transmission probability for the Aloha protocol as a function of estimated vehicular density is derived. This probability is then used to obtain the optimal maximum CW that can be integrated in an amended CSMA/CA protocol to maximise the single-hop throughput among adjacent vehicles. We show by means of simulation that the beneficial impact the proposed protocol is increased channel throughput and reduced transmission delay when compared with the standardised protocol CSMA/CA in IEEE 802.11p. These results reveal the applicability of the new, optimised protocol to safety applications and clustering techniques with stringent performance requirements. Lastly, we propose a Stable Clustering Algorithm for vehicular ad-hoc networks (SCalE) internetworking. The exchange of the necessary status information to support the efficient clusters formation can firmly relay on the support of our optimised CSMA/CA protocol. The SCalE algorithm makes use of the knowledge of the vehicles behaviour (explained in Chapter 5) for efficient selection of CHs, and selects a backup CH on top of the CH to maintain the stability of cluster structures. The increased stability and improved performance of the SCalE algorithm is studied and compared with existing clustering algorithms.Open Acces
    corecore