908 research outputs found

    A Survey on Ear Biometrics

    No full text
    Recognizing people by their ear has recently received significant attention in the literature. Several reasons account for this trend: first, ear recognition does not suffer from some problems associated with other non contact biometrics, such as face recognition; second, it is the most promising candidate for combination with the face in the context of multi-pose face recognition; and third, the ear can be used for human recognition in surveillance videos where the face may be occluded completely or in part. Further, the ear appears to degrade little with age. Even though, current ear detection and recognition systems have reached a certain level of maturity, their success is limited to controlled indoor conditions. In addition to variation in illumination, other open research problems include hair occlusion; earprint forensics; ear symmetry; ear classification; and ear individuality. This paper provides a detailed survey of research conducted in ear detection and recognition. It provides an up-to-date review of the existing literature revealing the current state-of-art for not only those who are working in this area but also for those who might exploit this new approach. Furthermore, it offers insights into some unsolved ear recognition problems as well as ear databases available for researchers

    Leveraging 3D City Models for Rotation Invariant Place-of-Interest Recognition

    Get PDF
    Given a cell phone image of a building we address the problem of place-of-interest recognition in urban scenarios. Here, we go beyond what has been shown in earlier approaches by exploiting the nowadays often available 3D building information (e.g. from extruded floor plans) and massive street-level image data for database creation. Exploiting vanishing points in query images and thus fully removing 3D rotation from the recognition problem allows then to simplify the feature invariance to a purely homothetic problem, which we show enables more discriminative power in feature descriptors than classical SIFT. We rerank visual word based document queries using a fast stratified homothetic verification that in most cases boosts the correct document to top positions if it was in the short list. Since we exploit 3D building information, the approach finally outputs the camera pose in real world coordinates ready for augmenting the cell phone image with virtual 3D information. The whole system is demonstrated to outperform traditional approaches on city scale experiments for different sources of street-level image data and a challenging set of cell phone image

    Biometrics in forensic science: challenges, lessons and new technologies

    Get PDF
    Biometrics has historically found its natural mate in Forensics. The first applications found in the literature and over cited so many times, are related to biometric measurements for the identification of multiple offenders from some of their biometric and anthropometric characteristics (tenprint cards) and individualization of offender from traces found on crime-scenes (e.g. fingermarks, earmarks, bitemarks, DNA). From sir Francis Galton, to the introduction of AFIS systems in the scientific laboratories of police departments, Biometrics and Forensics have been "dating" with alternate results and outcomes. As a matter of facts there are many technologies developed under the "Biometrics umbrella" which may be optimised to better impact several Forensic scenarios and criminal investigations. At the same time, there is an almost endless list of open problems and processes in Forensics which may benefit from the introduction of tailored Biometric technologies. Joining the two disciplines, on a proper scientific ground, may only result in the success for both fields, as well as a tangible benefit for the society. A number of Forensic processes may involve Biometric-related technologies, among them: Evidence evaluation, Forensic investigation, Forensic Intelligence, Surveillance, Forensic ID management and Verification.\ud The COST Action IC1106 funded by the European Commission, is trying to better understand how Biometric and Forensics synergies can be exploited within a pan-European scientific alliance which extends its scope to partners from USA, China and Australia.\ud Several results have been already accomplished pursuing research in this direction. Notably the studies in 2D and 3D face recognition have been gradually applied to the forensic investigation process. In this paper a few solutions will be presented to match 3D face shapes along with some experimental results

    Expanded Parts Model for Semantic Description of Humans in Still Images

    Get PDF
    We introduce an Expanded Parts Model (EPM) for recognizing human attributes (e.g. young, short hair, wearing suit) and actions (e.g. running, jumping) in still images. An EPM is a collection of part templates which are learnt discriminatively to explain specific scale-space regions in the images (in human centric coordinates). This is in contrast to current models which consist of a relatively few (i.e. a mixture of) 'average' templates. EPM uses only a subset of the parts to score an image and scores the image sparsely in space, i.e. it ignores redundant and random background in an image. To learn our model, we propose an algorithm which automatically mines parts and learns corresponding discriminative templates together with their respective locations from a large number of candidate parts. We validate our method on three recent challenging datasets of human attributes and actions. We obtain convincing qualitative and state-of-the-art quantitative results on the three datasets.Comment: Accepted for publication in IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI

    SceneFlowFields: Dense Interpolation of Sparse Scene Flow Correspondences

    Full text link
    While most scene flow methods use either variational optimization or a strong rigid motion assumption, we show for the first time that scene flow can also be estimated by dense interpolation of sparse matches. To this end, we find sparse matches across two stereo image pairs that are detected without any prior regularization and perform dense interpolation preserving geometric and motion boundaries by using edge information. A few iterations of variational energy minimization are performed to refine our results, which are thoroughly evaluated on the KITTI benchmark and additionally compared to state-of-the-art on MPI Sintel. For application in an automotive context, we further show that an optional ego-motion model helps to boost performance and blends smoothly into our approach to produce a segmentation of the scene into static and dynamic parts.Comment: IEEE Winter Conference on Applications of Computer Vision (WACV), 201

    Biometric Systems

    Get PDF
    Because of the accelerating progress in biometrics research and the latest nation-state threats to security, this book's publication is not only timely but also much needed. This volume contains seventeen peer-reviewed chapters reporting the state of the art in biometrics research: security issues, signature verification, fingerprint identification, wrist vascular biometrics, ear detection, face detection and identification (including a new survey of face recognition), person re-identification, electrocardiogram (ECT) recognition, and several multi-modal systems. This book will be a valuable resource for graduate students, engineers, and researchers interested in understanding and investigating this important field of study
    • ā€¦
    corecore