6,505 research outputs found

    Beam scanning by liquid-crystal biasing in a modified SIW structure

    Get PDF
    A fixed-frequency beam-scanning 1D antenna based on Liquid Crystals (LCs) is designed for application in 2D scanning with lateral alignment. The 2D array environment imposes full decoupling of adjacent 1D antennas, which often conflicts with the LC requirement of DC biasing: the proposed design accommodates both. The LC medium is placed inside a Substrate Integrated Waveguide (SIW) modified to work as a Groove Gap Waveguide, with radiating slots etched on the upper broad wall, that radiates as a Leaky-Wave Antenna (LWA). This allows effective application of the DC bias voltage needed for tuning the LCs. At the same time, the RF field remains laterally confined, enabling the possibility to lay several antennas in parallel and achieve 2D beam scanning. The design is validated by simulation employing the actual properties of a commercial LC medium

    Identity, Power, and Prestige in Switzerland's Multilingual Education

    Get PDF
    Switzerland is known for its multilingualism, yet not all languages are represented equally in society. The situation is exacerbated by the influx of heritage languages and English through migration and globalization processes which challenge the traditional education system. This study is the first to investigate how schools in Grisons, Fribourg, and Zurich negotiate neoliberal forces leading to a growing necessity of English, a romanticized view on national languages, and the social justice perspective of institutionalizing heritage languages. It uncovers power and legitimacy issues and showcases students' and teachers' complex identities to advocate equitable multilingual education

    Modelling, Monitoring, Control and Optimization for Complex Industrial Processes

    Get PDF
    This reprint includes 22 research papers and an editorial, collected from the Special Issue "Modelling, Monitoring, Control and Optimization for Complex Industrial Processes", highlighting recent research advances and emerging research directions in complex industrial processes. This reprint aims to promote the research field and benefit the readers from both academic communities and industrial sectors

    A Data-driven Approach to Large Knowledge Graph Matching

    Get PDF
    In the last decade, a remarkable number of open Knowledge Graphs (KGs) were developed, such as DBpedia, NELL, and YAGO. While some of such KGs are curated via crowdsourcing platforms, others are semi-automatically constructed. This has resulted in a significant degree of semantic heterogeneity and overlapping facts. KGs are highly complementary; thus, mapping them can benefit intelligent applications that require integrating different KGs such as recommendation systems, query answering, and semantic web navigation. Although the problem of ontology matching has been investigated and a significant number of systems have been developed, the challenges of mapping large-scale KGs remain significant. KG matching has been a topic of interest in the Semantic Web community since it has been introduced to the Ontology Alignment Evaluation Initiative (OAEI) in 2018. Nonetheless, a major limitation of the current benchmarks is their lack of representation of real-world KGs. This work also highlights a number of limitations with current matching methods, such as: (i) they are highly dependent on string-based similarity measures, and (ii) they are primarily built to handle well-formed ontologies. These features make them unsuitable for large, (semi/fully) automatically constructed KGs with hundreds of classes and millions of instances. Another limitation of current work is the lack of benchmark datasets that represent the challenging task of matching real-world KGs. This work addresses the limitation of the current datasets by first introducing two gold standard datasets for matching the schema of large, automatically constructed, less-well-structured KGs based on common KGs such as NELL, DBpedia, and Wikidata. We believe that the datasets which we make public in this work make the largest domain-independent benchmarks for matching KG classes. As many state-of-the-art methods are not suitable for matching large-scale and cross-domain KGs that often suffer from highly imbalanced class distribution, recent studies have revisited instance-based matching techniques in addressing this task. This is because such large KGs often lack a well-defined structure and descriptive metadata about their classes, but contain numerous class instances. Therefore, inspired by the role of instances in KGs, we propose a hybrid matching approach. Our method composes an instance-based matcher that casts the schema-matching process as a text classification task by exploiting instances of KG classes, and a string-based matcher. Our method is domain-independent and is able to handle KG classes with imbalanced populations. Further, we show that incorporating an instance-based approach with the appropriate data balancing strategy results in significant results in matching large and common KG classes

    Development of linguistic linked open data resources for collaborative data-intensive research in the language sciences

    Get PDF
    Making diverse data in linguistics and the language sciences open, distributed, and accessible: perspectives from language/language acquistiion researchers and technical LOD (linked open data) researchers. This volume examines the challenges inherent in making diverse data in linguistics and the language sciences open, distributed, integrated, and accessible, thus fostering wide data sharing and collaboration. It is unique in integrating the perspectives of language researchers and technical LOD (linked open data) researchers. Reporting on both active research needs in the field of language acquisition and technical advances in the development of data interoperability, the book demonstrates the advantages of an international infrastructure for scholarship in the field of language sciences. With contributions by researchers who produce complex data content and scholars involved in both the technology and the conceptual foundations of LLOD (linguistics linked open data), the book focuses on the area of language acquisition because it involves complex and diverse data sets, cross-linguistic analyses, and urgent collaborative research. The contributors discuss a variety of research methods, resources, and infrastructures. Contributors Isabelle Barrière, Nan Bernstein Ratner, Steven Bird, Maria Blume, Ted Caldwell, Christian Chiarcos, Cristina Dye, Suzanne Flynn, Claire Foley, Nancy Ide, Carissa Kang, D. Terence Langendoen, Barbara Lust, Brian MacWhinney, Jonathan Masci, Steven Moran, Antonio Pareja-Lora, Jim Reidy, Oya Y. Rieger, Gary F. Simons, Thorsten Trippel, Kara Warburton, Sue Ellen Wright, Claus Zin

    Novel approaches for hierarchical classification with case studies in protein function prediction

    Get PDF
    A very large amount of research in the data mining, machine learning, statistical pattern recognition and related research communities has focused on flat classification problems. However, many problems in the real world such as hierarchical protein function prediction have their classes naturally organised into hierarchies. The task of hierarchical classification, however, needs to be better defined as researchers into one application domain are often unaware of similar efforts developed in other research areas. The first contribution of this thesis is to survey the task of hierarchical classification across different application domains and present an unifying framework for the task. After clearly defining the problem, we explore novel approaches to the task. Based on the understanding gained by surveying the task of hierarchical classification, there are three major approaches to deal with hierarchical classification problems. The first approach is to use one of the many existing flat classification algorithms to predict only the leaf classes in the hierarchy. Note that, in the training phase, this approach completely ignores the hierarchical class relationships, i.e. the parent-child and sibling class relationships, but in the testing phase the ancestral classes of an instance can be inferred from its predicted leaf classes. The second approach is to build a set of local models, by training one flat classification algorithm for each local view of the hierarchy. The two main variations of this approach are: (a) training a local flat multi-class classifier at each non-leaf class node, where each classifier discriminates among the child classes of its associated class; or (b) training a local fiat binary classifier at each node of the class hierarchy, where each classifier predicts whether or not a new instance has the classifier’s associated class. In both these variations, in the testing phase a procedure is used to combine the predictions of the set of local classifiers in a coherent way, avoiding inconsistent predictions. The third approach is to use a global-model hierarchical classification algorithm, which builds one single classification model by taking into account all the hierarchical class relationships in the training phase. In the context of this categorization of hierarchical classification approaches, the other contributions of this thesis are as follows. The second contribution of this thesis is a novel algorithm which is based on the local classifier per parent node approach. The novel algorithm is the selective representation approach that automatically selects the best protein representation to use at each non-leaf class node. The third contribution is a global-model hierarchical classification extension of the well known naive Bayes algorithm. Given the good predictive performance of the global-model hierarchical-classification naive Bayes algorithm, we relax the Naive Bayes’ assumption that attributes are independent from each other given the class by using the concept of k dependencies. Hence, we extend the flat classification /¿-Dependence Bayesian network classifier to the task of hierarchical classification, which is the fourth contribution of this thesis. Both the proposed global-model hierarchical classification Naive Bayes and the proposed global-model hierarchical /¿-Dependence Bayesian network classifier have achieved predictive accuracies that were, overall, significantly higher than the predictive accuracies obtained by their corresponding local hierarchical classification versions, across a number of datasets for the task of hierarchical protein function prediction
    • …
    corecore