259 research outputs found

    A Survey on Security Threats and Countermeasures in IEEE Test Standards

    Get PDF
    International audienceEditor's note: Test infrastructure has been shown to be a portal for hackers. This article reviews the threats and countermeasures for IEEE test infrastructure standards

    DeSyRe: on-Demand System Reliability

    No full text
    The DeSyRe project builds on-demand adaptive and reliable Systems-on-Chips (SoCs). As fabrication technology scales down, chips are becoming less reliable, thereby incurring increased power and performance costs for fault tolerance. To make matters worse, power density is becoming a significant limiting factor in SoC design, in general. In the face of such changes in the technological landscape, current solutions for fault tolerance are expected to introduce excessive overheads in future systems. Moreover, attempting to design and manufacture a totally defect and fault-free system, would impact heavily, even prohibitively, the design, manufacturing, and testing costs, as well as the system performance and power consumption. In this context, DeSyRe delivers a new generation of systems that are reliable by design at well-balanced power, performance, and design costs. In our attempt to reduce the overheads of fault-tolerance, only a small fraction of the chip is built to be fault-free. This fault-free part is then employed to manage the remaining fault-prone resources of the SoC. The DeSyRe framework is applied to two medical systems with high safety requirements (measured using the IEC 61508 functional safety standard) and tight power and performance constraints

    Communication synthesis of networks-on-chip (NoC)

    Get PDF
    The emergence of networks-on-chip (NoC) as the communication infrastructure solution for complex multi-core SoCs presents communication synthesis challenges. This dissertation addresses the design and run-time management aspects of communication synthesis. Design reuse and the infeasibility of Intellectual Property (IP) core interface redesign, requires the development of a Core-Network Interface (CNI) which allows them to communicate over the on-chip network. The absence of intelligence amongst the NoC components, entails the introduction of a CNI capable of not only providing basic packetization and depacketization, but also other essential services such as reliability, power management, reconguration and test support. A generic CNI architecture providing these services for NoCs is proposed and evaluated in this dissertation. Rising on-chip communication power costs and reliability concerns due to these, motivate the development of a peak power management technique that is both scalable to dierent NoCs and adaptable to varying trac congurations. A scalable and adaptable peak power management technique - SAPP - is proposed and demonstrated. Latency and throughput improvements observed with SAPP demonstrate its superiority over existing techniques. Increasing design complexity make prediction of design lifetimes dicult. Post SoC deployment, an on-line health monitoring scheme, is essential to maintain con- dence in the correct operation of on-chip cores. The rising design complexity and IP core test costs makes non-concurrent testing of the IP cores infeasible. An on-line scheme capable of managing IP core test in the presence of executing applications is essential. Such a scheme ensures application performance and system power budgets are eciently managed. This dissertation proposes Concurrent On-Line Test (COLT) for NoC-based systems and demonstrates how a robust implementation of COLT using a Test Infrastructure-IP (TI-IP) can be used to maintain condence in the correct operation of the SoC

    Innovative Techniques for Testing and Diagnosing SoCs

    Get PDF
    We rely upon the continued functioning of many electronic devices for our everyday welfare, usually embedding integrated circuits that are becoming even cheaper and smaller with improved features. Nowadays, microelectronics can integrate a working computer with CPU, memories, and even GPUs on a single die, namely System-On-Chip (SoC). SoCs are also employed on automotive safety-critical applications, but need to be tested thoroughly to comply with reliability standards, in particular the ISO26262 functional safety for road vehicles. The goal of this PhD. thesis is to improve SoC reliability by proposing innovative techniques for testing and diagnosing its internal modules: CPUs, memories, peripherals, and GPUs. The proposed approaches in the sequence appearing in this thesis are described as follows: 1. Embedded Memory Diagnosis: Memories are dense and complex circuits which are susceptible to design and manufacturing errors. Hence, it is important to understand the fault occurrence in the memory array. In practice, the logical and physical array representation differs due to an optimized design which adds enhancements to the device, namely scrambling. This part proposes an accurate memory diagnosis by showing the efforts of a software tool able to analyze test results, unscramble the memory array, map failing syndromes to cell locations, elaborate cumulative analysis, and elaborate a final fault model hypothesis. Several SRAM memory failing syndromes were analyzed as case studies gathered on an industrial automotive 32-bit SoC developed by STMicroelectronics. The tool displayed defects virtually, and results were confirmed by real photos taken from a microscope. 2. Functional Test Pattern Generation: The key for a successful test is the pattern applied to the device. They can be structural or functional; the former usually benefits from embedded test modules targeting manufacturing errors and is only effective before shipping the component to the client. The latter, on the other hand, can be applied during mission minimally impacting on performance but is penalized due to high generation time. However, functional test patterns may benefit for having different goals in functional mission mode. Part III of this PhD thesis proposes three different functional test pattern generation methods for CPU cores embedded in SoCs, targeting different test purposes, described as follows: a. Functional Stress Patterns: Are suitable for optimizing functional stress during I Operational-life Tests and Burn-in Screening for an optimal device reliability characterization b. Functional Power Hungry Patterns: Are suitable for determining functional peak power for strictly limiting the power of structural patterns during manufacturing tests, thus reducing premature device over-kill while delivering high test coverage c. Software-Based Self-Test Patterns: Combines the potentiality of structural patterns with functional ones, allowing its execution periodically during mission. In addition, an external hardware communicating with a devised SBST was proposed. It helps increasing in 3% the fault coverage by testing critical Hardly Functionally Testable Faults not covered by conventional SBST patterns. An automatic functional test pattern generation exploiting an evolutionary algorithm maximizing metrics related to stress, power, and fault coverage was employed in the above-mentioned approaches to quickly generate the desired patterns. The approaches were evaluated on two industrial cases developed by STMicroelectronics; 8051-based and a 32-bit Power Architecture SoCs. Results show that generation time was reduced upto 75% in comparison to older methodologies while increasing significantly the desired metrics. 3. Fault Injection in GPGPU: Fault injection mechanisms in semiconductor devices are suitable for generating structural patterns, testing and activating mitigation techniques, and validating robust hardware and software applications. GPGPUs are known for fast parallel computation used in high performance computing and advanced driver assistance where reliability is the key point. Moreover, GPGPU manufacturers do not provide design description code due to content secrecy. Therefore, commercial fault injectors using the GPGPU model is unfeasible, making radiation tests the only resource available, but are costly. In the last part of this thesis, we propose a software implemented fault injector able to inject bit-flip in memory elements of a real GPGPU. It exploits a software debugger tool and combines the C-CUDA grammar to wisely determine fault spots and apply bit-flip operations in program variables. The goal is to validate robust parallel algorithms by studying fault propagation or activating redundancy mechanisms they possibly embed. The effectiveness of the tool was evaluated on two robust applications: redundant parallel matrix multiplication and floating point Fast Fourier Transform

    Infrastructures and Algorithms for Testable and Dependable Systems-on-a-Chip

    Get PDF
    Every new node of semiconductor technologies provides further miniaturization and higher performances, increasing the number of advanced functions that electronic products can offer. Silicon area is now so cheap that industries can integrate in a single chip usually referred to as System-on-Chip (SoC), all the components and functions that historically were placed on a hardware board. Although adding such advanced functionality can benefit users, the manufacturing process is becoming finer and denser, making chips more susceptible to defects. Today’s very deep-submicron semiconductor technologies (0.13 micron and below) have reached susceptibility levels that put conventional semiconductor manufacturing at an impasse. Being able to rapidly develop, manufacture, test, diagnose and verify such complex new chips and products is crucial for the continued success of our economy at-large. This trend is expected to continue at least for the next ten years making possible the design and production of 100 million transistor chips. To speed up the research, the National Technology Roadmap for Semiconductors identified in 1997 a number of major hurdles to be overcome. Some of these hurdles are related to test and dependability. Test is one of the most critical tasks in the semiconductor production process where Integrated Circuits (ICs) are tested several times starting from the wafer probing to the end of production test. Test is not only necessary to assure fault free devices but it also plays a key role in analyzing defects in the manufacturing process. This last point has high relevance since increasing time-to-market pressure on semiconductor fabrication often forces foundries to start volume production on a given semiconductor technology node before reaching the defect densities, and hence yield levels, traditionally obtained at that stage. The feedback derived from test is the only way to analyze and isolate many of the defects in today’s processes and to increase process’s yield. With the increasing need of high quality electronic products, at each new physical assembly level, such as board and system assembly, test is used for debugging, diagnosing and repairing the sub-assemblies in their new environment. Similarly, the increasing reliability, availability and serviceability requirements, lead the users of high-end products performing periodic tests in the field throughout the full life cycle. To allow advancements in each one of the above scaling trends, fundamental changes are expected to emerge in different Integrated Circuits (ICs) realization disciplines such as IC design, packaging and silicon process. These changes have a direct impact on test methods, tools and equipment. Conventional test equipment and methodologies will be inadequate to assure high quality levels. On chip specialized block dedicated to test, usually referred to as Infrastructure IP (Intellectual Property), need to be developed and included in the new complex designs to assure that new chips will be adequately tested, diagnosed, measured, debugged and even sometimes repaired. In this thesis, some of the scaling trends in designing new complex SoCs will be analyzed one at a time, observing their implications on test and identifying the key hurdles/challenges to be addressed. The goal of the remaining of the thesis is the presentation of possible solutions. It is not sufficient to address just one of the challenges; all must be met at the same time to fulfill the market requirements

    High-level services for networks-on-chip

    Get PDF
    Future technology trends envision that next-generation Multiprocessors Systems-on- Chip (MPSoCs) will be composed of a combination of a large number of processing and storage elements interconnected by complex communication architectures. Communication and interconnection between these basic blocks play a role of crucial importance when the number of these elements increases. Enabling reliable communication channels between cores becomes therefore a challenge for system designers. Networks-on-Chip (NoCs) appeared as a strategy for connecting and managing the communication between several design elements and IP blocks, as required in complex Systems-on-Chip (SoCs). The topic can be considered as a multidisciplinary synthesis of multiprocessing, parallel computing, networking, and on- chip communication domains. Networks-on-Chip, in addition to standard communication services, can be employed for providing support for the implementation of system-level services. This dissertation will demonstrate how high-level services can be added to an MPSoC platform by embedding appropriate hardware/software support in the network interfaces (NIs) of the NoC. In this dissertation, the implementation of innovative modules acting in parallel with protocol translation and data transmission in NIs is proposed and evaluated. The modules can support the execution of the high-level services in the NoC at a relatively low cost in terms of area and energy consumption. Three types of services will be addressed and discussed: security, monitoring, and fault tolerance. With respect to the security aspect, this dissertation will discuss the implementation of an innovative data protection mechanism for detecting and preventing illegal accesses to protected memory blocks and/or memory mapped peripherals. The second aspect will be addressed by proposing the implementation of a monitoring system based on programmable multipurpose monitoring probes aimed at detecting NoC internal events and run-time characteristics. As last topic, new architectural solutions for the design of fault tolerant network interfaces will be presented and discussed

    Error Detection and Diagnosis for System-on-Chip in Space Applications

    Get PDF
    Tesis por compendio de publicacionesLos componentes electrónicos comerciales, comúnmente llamados componentes Commercial-Off-The-Shelf (COTS) están presentes en multitud de dispositivos habituales en nuestro día a día. Particularmente, el uso de microprocesadores y sistemas en chip (SoC) altamente integrados ha favorecido la aparición de dispositivos electrónicos cada vez más inteligentes que sostienen el estilo de vida y el avance de la sociedad moderna. Su uso se ha generalizado incluso en aquellos sistemas que se consideran críticos para la seguridad, como vehículos, aviones, armamento, dispositivos médicos, implantes o centrales eléctricas. En cualquiera de ellos, un fallo podría tener graves consecuencias humanas o económicas. Sin embargo, todos los sistemas electrónicos conviven constantemente con factores internos y externos que pueden provocar fallos en su funcionamiento. La capacidad de un sistema para funcionar correctamente en presencia de fallos se denomina tolerancia a fallos, y es un requisito en el diseño y operación de sistemas críticos. Los vehículos espaciales como satélites o naves espaciales también hacen uso de microprocesadores para operar de forma autónoma o semi autónoma durante su vida útil, con la dificultad añadida de que no pueden ser reparados en órbita, por lo que se consideran sistemas críticos. Además, las duras condiciones existentes en el espacio, y en particular los efectos de la radiación, suponen un gran desafío para el correcto funcionamiento de los dispositivos electrónicos. Concretamente, los fallos transitorios provocados por radiación (conocidos como soft errors) tienen el potencial de ser una de las mayores amenazas para la fiabilidad de un sistema en el espacio. Las misiones espaciales de gran envergadura, típicamente financiadas públicamente como en el caso de la NASA o la Agencia Espacial Europea (ESA), han tenido históricamente como requisito evitar el riesgo a toda costa por encima de cualquier restricción de coste o plazo. Por ello, la selección de componentes resistentes a la radiación (rad-hard) específicamente diseñados para su uso en el espacio ha sido la metodología imperante en el paradigma que hoy podemos denominar industria espacial tradicional, u Old Space. Sin embargo, los componentes rad-hard tienen habitualmente un coste mucho más alto y unas prestaciones mucho menores que otros componentes COTS equivalentes. De hecho, los componentes COTS ya han sido utilizados satisfactoriamente en misiones de la NASA o la ESA cuando las prestaciones requeridas por la misión no podían ser cubiertas por ningún componente rad-hard existente. En los últimos años, el acceso al espacio se está facilitando debido en gran parte a la entrada de empresas privadas en la industria espacial. Estas empresas no siempre buscan evitar el riesgo a toda costa, sino que deben perseguir una rentabilidad económica, por lo que hacen un balance entre riesgo, coste y plazo mediante gestión del riesgo en un paradigma denominado Nuevo Espacio o New Space. Estas empresas a menudo están interesadas en entregar servicios basados en el espacio con las máximas prestaciones y el mayor beneficio posibles, para lo cual los componentes rad-hard son menos atractivos debido a su mayor coste y menores prestaciones que los componentes COTS existentes. Sin embargo, los componentes COTS no han sido específicamente diseñados para su uso en el espacio y típicamente no incluyen técnicas específicas para evitar que los efectos de la radiación afecten su funcionamiento. Los componentes COTS se comercializan tal cual son, y habitualmente no es posible modificarlos para mejorar su resistencia a la radiación. Además, los elevados niveles de integración de los sistemas en chip (SoC) complejos de altas prestaciones dificultan su observación y la aplicación de técnicas de tolerancia a fallos. Este problema es especialmente relevante en el caso de los microprocesadores. Por tanto, existe un gran interés en el desarrollo de técnicas que permitan conocer y mejorar el comportamiento de los microprocesadores COTS bajo radiación sin modificar su arquitectura y sin interferir en su funcionamiento para facilitar su uso en el espacio y con ello maximizar las prestaciones de las misiones espaciales presentes y futuras. En esta Tesis se han desarrollado técnicas novedosas para detectar, diagnosticar y mitigar los errores producidos por radiación en microprocesadores y sistemas en chip (SoC) comerciales, utilizando la interfaz de traza como punto de observación. La interfaz de traza es un recurso habitual en los microprocesadores modernos, principalmente enfocado a soportar las tareas de desarrollo y depuración del software durante la fase de diseño. Sin embargo, una vez el desarrollo ha concluido, la interfaz de traza típicamente no se utiliza durante la fase operativa del sistema, por lo que puede ser reutilizada sin coste. La interfaz de traza constituye un punto de conexión viable para observar el comportamiento de un microprocesador de forma no intrusiva y sin interferir en su funcionamiento. Como resultado de esta Tesis se ha desarrollado un módulo IP capaz de recabar y decodificar la información de traza de un microprocesador COTS moderno de altas prestaciones. El IP es altamente configurable y personalizable para adaptarse a diferentes aplicaciones y tipos de procesadores. Ha sido diseñado y validado utilizando el dispositivo Zynq-7000 de Xilinx como plataforma de desarrollo, que constituye un dispositivo COTS de interés en la industria espacial. Este dispositivo incluye un procesador ARM Cortex-A9 de doble núcleo, que es representativo del conjunto de microprocesadores hard-core modernos de altas prestaciones. El IP resultante es compatible con la tecnología ARM CoreSight, que proporciona acceso a información de traza en los microprocesadores ARM. El IP incorpora técnicas para detectar errores en el flujo de ejecución y en los datos de la aplicación ejecutada utilizando la información de traza, en tiempo real y con muy baja latencia. El IP se ha validado en campañas de inyección de fallos y también en radiación con protones y neutrones en instalaciones especializadas. También se ha combinado con otras técnicas de tolerancia a fallos para construir técnicas híbridas de mitigación de errores. Los resultados experimentales obtenidos demuestran su alta capacidad de detección y potencialidad en el diagnóstico de errores producidos por radiación. El resultado de esta Tesis, desarrollada en el marco de un Doctorado Industrial entre la Universidad Carlos III de Madrid (UC3M) y la empresa Arquimea, se ha transferido satisfactoriamente al entorno empresarial en forma de un proyecto financiado por la Agencia Espacial Europea para continuar su desarrollo y posterior explotación.Commercial electronic components, also known as Commercial-Off-The-Shelf (COTS), are present in a wide variety of devices commonly used in our daily life. Particularly, the use of microprocessors and highly integrated System-on-Chip (SoC) devices has fostered the advent of increasingly intelligent electronic devices which sustain the lifestyles and the progress of modern society. Microprocessors are present even in safety-critical systems, such as vehicles, planes, weapons, medical devices, implants, or power plants. In any of these cases, a fault could involve severe human or economic consequences. However, every electronic system deals continuously with internal and external factors that could provoke faults in its operation. The capacity of a system to operate correctly in presence of faults is known as fault-tolerance, and it becomes a requirement in the design and operation of critical systems. Space vehicles such as satellites or spacecraft also incorporate microprocessors to operate autonomously or semi-autonomously during their service life, with the additional difficulty that they cannot be repaired once in-orbit, so they are considered critical systems. In addition, the harsh conditions in space, and specifically radiation effects, involve a big challenge for the correct operation of electronic devices. In particular, radiation-induced soft errors have the potential to become one of the major risks for the reliability of systems in space. Large space missions, typically publicly funded as in the case of NASA or European Space Agency (ESA), have followed historically the requirement to avoid the risk at any expense, regardless of any cost or schedule restriction. Because of that, the selection of radiation-resistant components (known as rad-hard) specifically designed to be used in space has been the dominant methodology in the paradigm of traditional space industry, also known as “Old Space”. However, rad-hard components have commonly a much higher associated cost and much lower performance that other equivalent COTS devices. In fact, COTS components have already been used successfully by NASA and ESA in missions that requested such high performance that could not be satisfied by any available rad-hard component. In the recent years, the access to space is being facilitated in part due to the irruption of private companies in the space industry. Such companies do not always seek to avoid the risk at any cost, but they must pursue profitability, so they perform a trade-off between risk, cost, and schedule through risk management in a paradigm known as “New Space”. Private companies are often interested in deliver space-based services with the maximum performance and maximum benefit as possible. With such objective, rad-hard components are less attractive than COTS due to their higher cost and lower performance. However, COTS components have not been specifically designed to be used in space and typically they do not include specific techniques to avoid or mitigate the radiation effects in their operation. COTS components are commercialized “as is”, so it is not possible to modify them to improve their susceptibility to radiation effects. Moreover, the high levels of integration of complex, high-performance SoC devices hinder their observability and the application of fault-tolerance techniques. This problem is especially relevant in the case of microprocessors. Thus, there is a growing interest in the development of techniques allowing to understand and improve the behavior of COTS microprocessors under radiation without modifying their architecture and without interfering with their operation. Such techniques may facilitate the use of COTS components in space and maximize the performance of present and future space missions. In this Thesis, novel techniques have been developed to detect, diagnose, and mitigate radiation-induced errors in COTS microprocessors and SoCs using the trace interface as an observation point. The trace interface is a resource commonly found in modern microprocessors, mainly intended to support software development and debugging activities during the design phase. However, it is commonly left unused during the operational phase of the system, so it can be reused with no cost. The trace interface constitutes a feasible connection point to observe microprocessor behavior in a non-intrusive manner and without disturbing processor operation. As a result of this Thesis, an IP module has been developed capable to gather and decode the trace information of a modern, high-end, COTS microprocessor. The IP is highly configurable and customizable to support different applications and processor types. The IP has been designed and validated using the Xilinx Zynq-7000 device as a development platform, which is an interesting COTS device for the space industry. This device features a dual-core ARM Cortex-A9 processor, which is a good representative of modern, high-end, hard-core microprocessors. The resulting IP is compatible with the ARM CoreSight technology, which enables access to trace information in ARM microprocessors. The IP is able to detect errors in the execution flow of the microprocessor and in the application data using trace information, in real time and with very low latency. The IP has been validated in fault injection campaigns and also under proton and neutron irradiation campaigns in specialized facilities. It has also been combined with other fault-tolerance techniques to build hybrid error mitigation approaches. Experimental results demonstrate its high detection capabilities and high potential for the diagnosis of radiation-induced errors. The result of this Thesis, developed in the framework of an Industrial Ph.D. between the University Carlos III of Madrid (UC3M) and the company Arquimea, has been successfully transferred to the company business as a project sponsored by European Space Agency to continue its development and subsequent commercialization.Programa de Doctorado en Ingeniería Eléctrica, Electrónica y Automática por la Universidad Carlos III de MadridPresidenta: María Luisa López Vallejo.- Secretario: Enrique San Millán Heredia.- Vocal: Luigi Di Lill

    CROSS-LAYER DESIGN, OPTIMIZATION AND PROTOTYPING OF NoCs FOR THE NEXT GENERATION OF HOMOGENEOUS MANY-CORE SYSTEMS

    Get PDF
    This thesis provides a whole set of design methods to enable and manage the runtime heterogeneity of features-rich industry-ready Tile-Based Networkon- Chips at different abstraction layers (Architecture Design, Network Assembling, Testing of NoC, Runtime Operation). The key idea is to maintain the functionalities of the original layers, and to improve the performance of architectures by allowing, joint optimization and layer coordinations. In general purpose systems, we address the microarchitectural challenges by codesigning and co-optimizing feature-rich architectures. In application-specific NoCs, we emphasize the event notification, so that the platform is continuously under control. At the network assembly level, this thesis proposes a Hold Time Robustness technique, to tackle the hold time issue in synchronous NoCs. At the network architectural level, the choice of a suitable synchronization paradigm requires a boost of synthesis flow as well as the coexistence with the DVFS. On one hand this implies the coexistence of mesochronous synchronizers in the network with dual-clock FIFOs at network boundaries. On the other hand, dual-clock FIFOs may be placed across inter-switch links hence removing the need for mesochronous synchronizers. This thesis will study the implications of the above approaches both on the design flow and on the performance and power quality metrics of the network. Once the manycore system is composed together, the issue of testing it arises. This thesis takes on this challenge and engineers various testing infrastructures. At the upper abstraction layer, the thesis addresses the issue of managing the fully operational system and proposes a congestion management technique named HACS. Moreover, some of the ideas of this thesis will undergo an FPGA prototyping. Finally, we provide some features for emerging technology by characterizing the power consumption of Optical NoC Interfaces

    Hardware acceleration using FPGAs for adaptive radiotherapy

    Get PDF
    Adaptive radiotherapy (ART) seeks to improve the accuracy of radiotherapy by adapting the treatment based on up-to-date images of the patient's anatomy captured at the time of treatment delivery. The amount of image data, combined with the clinical time requirements for ART, necessitates automatic image analysis to adapt the treatment plan. Currently, the computational effort of the image processing and plan adaptation means they cannot be completed in a clinically acceptable timeframe. This thesis aims to investigate the use of hardware acceleration on Field Programmable Gate Arrays (FPGAs) to accelerate algorithms for segmenting bony anatomy in Computed Tomography (CT) scans, to reduce the plan adaptation time for ART. An assessment was made of the overhead incurred by transferring image data to an FPGA-based hardware accelerator using the industry-standard DICOM protocol over an Ethernet connection. The rate was found to be likely to limit the performanceof hardware accelerators for ART, highlighting the need for an alternative method of integrating hardware accelerators with existing radiotherapy equipment. A clinically-validated segmentation algorithm was adapted for implementation in hardware. This was shown to process three-dimensional CT images up to 13.81 times faster than the original software implementation. The segmentations produced by the two implementations showed strong agreement. Modifications to the hardware implementation were proposed for segmenting fourdimensional CT scans. This was shown to process image volumes 14.96 times faster than the original software implementation, and the segmentations produced by the two implementations showed strong agreement in most cases.A second, novel, method for segmenting four-dimensional CT data was also proposed. The hardware implementation executed 1.95 times faster than the software implementation. However, the algorithm was found to be unsuitable for the global segmentation task examined here, although it may be suitable as a refining segmentation in the context of a larger ART algorithm.Adaptive radiotherapy (ART) seeks to improve the accuracy of radiotherapy by adapting the treatment based on up-to-date images of the patient's anatomy captured at the time of treatment delivery. The amount of image data, combined with the clinical time requirements for ART, necessitates automatic image analysis to adapt the treatment plan. Currently, the computational effort of the image processing and plan adaptation means they cannot be completed in a clinically acceptable timeframe. This thesis aims to investigate the use of hardware acceleration on Field Programmable Gate Arrays (FPGAs) to accelerate algorithms for segmenting bony anatomy in Computed Tomography (CT) scans, to reduce the plan adaptation time for ART. An assessment was made of the overhead incurred by transferring image data to an FPGA-based hardware accelerator using the industry-standard DICOM protocol over an Ethernet connection. The rate was found to be likely to limit the performanceof hardware accelerators for ART, highlighting the need for an alternative method of integrating hardware accelerators with existing radiotherapy equipment. A clinically-validated segmentation algorithm was adapted for implementation in hardware. This was shown to process three-dimensional CT images up to 13.81 times faster than the original software implementation. The segmentations produced by the two implementations showed strong agreement. Modifications to the hardware implementation were proposed for segmenting fourdimensional CT scans. This was shown to process image volumes 14.96 times faster than the original software implementation, and the segmentations produced by the two implementations showed strong agreement in most cases.A second, novel, method for segmenting four-dimensional CT data was also proposed. The hardware implementation executed 1.95 times faster than the software implementation. However, the algorithm was found to be unsuitable for the global segmentation task examined here, although it may be suitable as a refining segmentation in the context of a larger ART algorithm
    corecore