24,828 research outputs found

    Multi-modal joint embedding for fashion product retrieval

    Get PDF
    © 20xx IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.Finding a product in the fashion world can be a daunting task. Everyday, e-commerce sites are updating with thousands of images and their associated metadata (textual information), deepening the problem, akin to finding a needle in a haystack. In this paper, we leverage both the images and textual meta-data and propose a joint multi-modal embedding that maps both the text and images into a common latent space. Distances in the latent space correspond to similarity between products, allowing us to effectively perform retrieval in this latent space, which is both efficient and accurate. We train this embedding using large-scale real world e-commerce data by both minimizing the similarity between related products and using auxiliary classification networks to that encourage the embedding to have semantic meaning. We compare against existing approaches and show significant improvements in retrieval tasks on a large-scale e-commerce dataset. We also provide an analysis of the different metadata.Peer ReviewedPostprint (author's final draft

    Multi-Task Policy Search for Robotics

    No full text
    © 2014 IEEE.Learning policies that generalize across multiple tasks is an important and challenging research topic in reinforcement learning and robotics. Training individual policies for every single potential task is often impractical, especially for continuous task variations, requiring more principled approaches to share and transfer knowledge among similar tasks. We present a novel approach for learning a nonlinear feedback policy that generalizes across multiple tasks. The key idea is to define a parametrized policy as a function of both the state and the task, which allows learning a single policy that generalizes across multiple known and unknown tasks. Applications of our novel approach to reinforcement and imitation learning in realrobot experiments are shown

    From Word to Sense Embeddings: A Survey on Vector Representations of Meaning

    Get PDF
    Over the past years, distributed semantic representations have proved to be effective and flexible keepers of prior knowledge to be integrated into downstream applications. This survey focuses on the representation of meaning. We start from the theoretical background behind word vector space models and highlight one of their major limitations: the meaning conflation deficiency, which arises from representing a word with all its possible meanings as a single vector. Then, we explain how this deficiency can be addressed through a transition from the word level to the more fine-grained level of word senses (in its broader acceptation) as a method for modelling unambiguous lexical meaning. We present a comprehensive overview of the wide range of techniques in the two main branches of sense representation, i.e., unsupervised and knowledge-based. Finally, this survey covers the main evaluation procedures and applications for this type of representation, and provides an analysis of four of its important aspects: interpretability, sense granularity, adaptability to different domains and compositionality.Comment: 46 pages, 8 figures. Published in Journal of Artificial Intelligence Researc

    An Empirical Analysis of NMT-Derived Interlingual Embeddings and their Use in Parallel Sentence Identification

    Get PDF
    End-to-end neural machine translation has overtaken statistical machine translation in terms of translation quality for some language pairs, specially those with large amounts of parallel data. Besides this palpable improvement, neural networks provide several new properties. A single system can be trained to translate between many languages at almost no additional cost other than training time. Furthermore, internal representations learned by the network serve as a new semantic representation of words -or sentences- which, unlike standard word embeddings, are learned in an essentially bilingual or even multilingual context. In view of these properties, the contribution of the present work is two-fold. First, we systematically study the NMT context vectors, i.e. output of the encoder, and their power as an interlingua representation of a sentence. We assess their quality and effectiveness by measuring similarities across translations, as well as semantically related and semantically unrelated sentence pairs. Second, as extrinsic evaluation of the first point, we identify parallel sentences in comparable corpora, obtaining an F1=98.2% on data from a shared task when using only NMT context vectors. Using context vectors jointly with similarity measures F1 reaches 98.9%.Comment: 11 pages, 4 figure
    corecore