1,755 research outputs found

    Active Collaborative Ensemble Tracking

    Full text link
    A discriminative ensemble tracker employs multiple classifiers, each of which casts a vote on all of the obtained samples. The votes are then aggregated in an attempt to localize the target object. Such method relies on collective competence and the diversity of the ensemble to approach the target/non-target classification task from different views. However, by updating all of the ensemble using a shared set of samples and their final labels, such diversity is lost or reduced to the diversity provided by the underlying features or internal classifiers' dynamics. Additionally, the classifiers do not exchange information with each other while striving to serve the collective goal, i.e., better classification. In this study, we propose an active collaborative information exchange scheme for ensemble tracking. This, not only orchestrates different classifier towards a common goal but also provides an intelligent update mechanism to keep the diversity of classifiers and to mitigate the shortcomings of one with the others. The data exchange is optimized with regard to an ensemble uncertainty utility function, and the ensemble is updated via co-training. The evaluations demonstrate promising results realized by the proposed algorithm for the real-world online tracking.Comment: AVSS 2017 Submissio

    Universum Prescription: Regularization using Unlabeled Data

    Full text link
    This paper shows that simply prescribing "none of the above" labels to unlabeled data has a beneficial regularization effect to supervised learning. We call it universum prescription by the fact that the prescribed labels cannot be one of the supervised labels. In spite of its simplicity, universum prescription obtained competitive results in training deep convolutional networks for CIFAR-10, CIFAR-100, STL-10 and ImageNet datasets. A qualitative justification of these approaches using Rademacher complexity is presented. The effect of a regularization parameter -- probability of sampling from unlabeled data -- is also studied empirically.Comment: 7 pages for article, 3 pages for supplemental material. To appear in AAAI-1

    Exploiting Data and Human Knowledge for Predicting Wildlife Poaching

    Full text link
    Poaching continues to be a significant threat to the conservation of wildlife and the associated ecosystem. Estimating and predicting where the poachers have committed or would commit crimes is essential to more effective allocation of patrolling resources. The real-world data in this domain is often sparse, noisy and incomplete, consisting of a small number of positive data (poaching signs), a large number of negative data with label uncertainty, and an even larger number of unlabeled data. Fortunately, domain experts such as rangers can provide complementary information about poaching activity patterns. However, this kind of human knowledge has rarely been used in previous approaches. In this paper, we contribute new solutions to the predictive analysis of poaching patterns by exploiting both very limited data and human knowledge. We propose an approach to elicit quantitative information from domain experts through a questionnaire built upon a clustering-based division of the conservation area. In addition, we propose algorithms that exploit qualitative and quantitative information provided by the domain experts to augment the dataset and improve learning. In collaboration with World Wild Fund for Nature, we show that incorporating human knowledge leads to better predictions in a conservation area in Northeastern China where the charismatic species is Siberian Tiger. The results show the importance of exploiting human knowledge when learning from limited data.Comment: COMPASS 201

    Progressive Ensemble Networks for Zero-Shot Recognition

    Full text link
    Despite the advancement of supervised image recognition algorithms, their dependence on the availability of labeled data and the rapid expansion of image categories raise the significant challenge of zero-shot learning. Zero-shot learning (ZSL) aims to transfer knowledge from labeled classes into unlabeled classes to reduce human labeling effort. In this paper, we propose a novel progressive ensemble network model with multiple projected label embeddings to address zero-shot image recognition. The ensemble network is built by learning multiple image classification functions with a shared feature extraction network but different label embedding representations, which enhance the diversity of the classifiers and facilitate information transfer to unlabeled classes. A progressive training framework is then deployed to gradually label the most confident images in each unlabeled class with predicted pseudo-labels and update the ensemble network with the training data augmented by the pseudo-labels. The proposed model performs training on both labeled and unlabeled data. It can naturally bridge the domain shift problem in visual appearances and be extended to the generalized zero-shot learning scenario. We conduct experiments on multiple ZSL datasets and the empirical results demonstrate the efficacy of the proposed model.Comment: CVPR1
    • …
    corecore