2,211 research outputs found

    Productive Development of Scalable Network Functions with NFork

    Full text link
    Despite decades of research, developing correct and scalable concurrent programs is still challenging. Network functions (NFs) are not an exception. This paper presents NFork, a system that helps NF domain experts to productively develop concurrent NFs by abstracting away concurrency from developers. The key scheme behind NFork's design is to exploit NF characteristics to overcome the limitations of prior work on concurrency programming. Developers write NFs as sequential programs, and during runtime, NFork performs transparent parallelization by processing packets in different cores. Exploiting NF characteristics, NFork leverages transactional memory and develops efficient concurrent data structures to achieve scalability and guarantee the absence of concurrency bugs. Since NFork manages concurrency, it further provides (i) a profiler that reveals the root causes of scalability bottlenecks inherent to the NF's semantics and (ii) actionable recipes for developers to mitigate these root causes by relaxing the NF's semantics. We show that NFs developed with NFork achieve competitive scalability with those in Cisco VPP [16], and NFork's profiler and recipes can effectively aid developers in optimizing NF scalability.Comment: 16 pages, 8 figure

    A Peer-to-Peer Middleware Framework for Resilient Persistent Programming

    Get PDF
    The persistent programming systems of the 1980s offered a programming model that integrated computation and long-term storage. In these systems, reliable applications could be engineered without requiring the programmer to write translation code to manage the transfer of data to and from non-volatile storage. More importantly, it simplified the programmer's conceptual model of an application, and avoided the many coherency problems that result from multiple cached copies of the same information. Although technically innovative, persistent languages were not widely adopted, perhaps due in part to their closed-world model. Each persistent store was located on a single host, and there were no flexible mechanisms for communication or transfer of data between separate stores. Here we re-open the work on persistence and combine it with modern peer-to-peer techniques in order to provide support for orthogonal persistence in resilient and potentially long-running distributed applications. Our vision is of an infrastructure within which an application can be developed and distributed with minimal modification, whereupon the application becomes resilient to certain failure modes. If a node, or the connection to it, fails during execution of the application, the objects are re-instantiated from distributed replicas, without their reference holders being aware of the failure. Furthermore, we believe that this can be achieved within a spectrum of application programmer intervention, ranging from minimal to totally prescriptive, as desired. The same mechanisms encompass an orthogonally persistent programming model. We outline our approach to implementing this vision, and describe current progress.Comment: Submitted to EuroSys 200

    Exploiting method semantics in client cache consistency protocols for object-oriented databases

    Get PDF
    PhD ThesisData-shipping systems are commonly used in client-server object-oriented databases. This is in- tended to utilise clients' resources and improve scalability by allowing clients to run transactions locally after fetching the required database items from the database server. A consequence of this is that a database item can be cached at more than one client. This therefore raises issues regarding client cache consistency and concurrency control. A number of client cache consistency protocols have been studied, and some approaches to concurrency control for object-oriented datahases have been proposed. Existing client consistency protocols, however, do not consider method semantics in concurrency control. This study proposes a client cache consistency protocol where method se- mantic can be exploited in concurrency control. It identifies issues regarding the use of method semantics for the protocol and investigates the performance using simulation. The performance re- sults show that this can result in performance gains when compared to existing protocols. The study also shows the potential benefits of asynchronous version of the protoco

    A true concurrent model of smart contracts executions

    Full text link
    The development of blockchain technologies has enabled the trustless execution of so-called smart contracts, i.e. programs that regulate the exchange of assets (e.g., cryptocurrency) between users. In a decentralized blockchain, the state of smart contracts is collaboratively maintained by a peer-to-peer network of mutually untrusted nodes, which collect from users a set of transactions (representing the required actions on contracts), and execute them in some order. Once this sequence of transactions is appended to the blockchain, the other nodes validate it, re-executing the transactions in the same order. The serial execution of transactions does not take advantage of the multi-core architecture of modern processors, so contributing to limit the throughput. In this paper we propose a true concurrent model of smart contract execution. Based on this, we show how static analysis of smart contracts can be exploited to parallelize the execution of transactions.Comment: Full version of the paper presented at COORDINATION 202

    Lock-free Concurrent Data Structures

    Full text link
    Concurrent data structures are the data sharing side of parallel programming. Data structures give the means to the program to store data, but also provide operations to the program to access and manipulate these data. These operations are implemented through algorithms that have to be efficient. In the sequential setting, data structures are crucially important for the performance of the respective computation. In the parallel programming setting, their importance becomes more crucial because of the increased use of data and resource sharing for utilizing parallelism. The first and main goal of this chapter is to provide a sufficient background and intuition to help the interested reader to navigate in the complex research area of lock-free data structures. The second goal is to offer the programmer familiarity to the subject that will allow her to use truly concurrent methods.Comment: To appear in "Programming Multi-core and Many-core Computing Systems", eds. S. Pllana and F. Xhafa, Wiley Series on Parallel and Distributed Computin

    Efficient Concurrent Execution of Smart Contracts in Blockchains using Object-based Transactional Memory

    Full text link
    This paper proposes an efficient framework to execute Smart Contract Transactions (SCTs) concurrently based on object semantics, using optimistic Single-Version Object-based Software Transactional Memory Systems (SVOSTMs) and Multi-Version OSTMs (MVOSTMs). In our framework, a multi-threaded miner constructs a Block Graph (BG), capturing the object-conflicts relations between SCTs, and stores it in the block. Later, validators re-execute the same SCTs concurrently and deterministically relying on this BG. A malicious miner can modify the BG to harm the blockchain, e.g., to cause double-spending. To identify malicious miners, we propose Smart Multi-threaded Validator (SMV). Experimental analysis shows that the proposed multi-threaded miner and validator achieve significant performance gains over state-of-the-art SCT execution framework.Comment: 49 pages, 26 figures, 11 table

    Maintaining consistency in distributed systems

    Get PDF
    In systems designed as assemblies of independently developed components, concurrent access to data or data structures normally arises within individual programs, and is controlled using mutual exclusion constructs, such as semaphores and monitors. Where data is persistent and/or sets of operation are related to one another, transactions or linearizability may be more appropriate. Systems that incorporate cooperative styles of distributed execution often replicate or distribute data within groups of components. In these cases, group oriented consistency properties must be maintained, and tools based on the virtual synchrony execution model greatly simplify the task confronting an application developer. All three styles of distributed computing are likely to be seen in future systems - often, within the same application. This leads us to propose an integrated approach that permits applications that use virtual synchrony with concurrent objects that respect a linearizability constraint, and vice versa. Transactional subsystems are treated as a special case of linearizability

    Design and Implementation of a Distributed Middleware for Parallel Execution of Legacy Enterprise Applications

    Get PDF
    A typical enterprise uses a local area network of computers to perform its business. During the off-working hours, the computational capacities of these networked computers are underused or unused. In order to utilize this computational capacity an application has to be recoded to exploit concurrency inherent in a computation which is clearly not possible for legacy applications without any source code. This thesis presents the design an implementation of a distributed middleware which can automatically execute a legacy application on multiple networked computers by parallelizing it. This middleware runs multiple copies of the binary executable code in parallel on different hosts in the network. It wraps up the binary executable code of the legacy application in order to capture the kernel level data access system calls and perform them distributively over multiple computers in a safe and conflict free manner. The middleware also incorporates a dynamic scheduling technique to execute the target application in minimum time by scavenging the available CPU cycles of the hosts in the network. This dynamic scheduling also supports the CPU availability of the hosts to change over time and properly reschedule the replicas performing the computation to minimize the execution time. A prototype implementation of this middleware has been developed as a proof of concept of the design. This implementation has been evaluated with a few typical case studies and the test results confirm that the middleware works as expected
    corecore