11 research outputs found

    Exploiting semantic web knowledge graphs in data mining

    Full text link
    Data Mining and Knowledge Discovery in Databases (KDD) is a research field concerned with deriving higher-level insights from data. The tasks performed in that field are knowledge intensive and can often benefit from using additional knowledge from various sources. Therefore, many approaches have been proposed in this area that combine Semantic Web data with the data mining and knowledge discovery process. Semantic Web knowledge graphs are a backbone of many information systems that require access to structured knowledge. Such knowledge graphs contain factual knowledge about real word entities and the relations between them, which can be utilized in various natural language processing, information retrieval, and any data mining applications. Following the principles of the Semantic Web, Semantic Web knowledge graphs are publicly available as Linked Open Data. Linked Open Data is an open, interlinked collection of datasets in machine-interpretable form, covering most of the real world domains. In this thesis, we investigate the hypothesis if Semantic Web knowledge graphs can be exploited as background knowledge in different steps of the knowledge discovery process, and different data mining tasks. More precisely, we aim to show that Semantic Web knowledge graphs can be utilized for generating valuable data mining features that can be used in various data mining tasks. Identifying, collecting and integrating useful background knowledge for a given data mining application can be a tedious and time consuming task. Furthermore, most data mining tools require features in propositional form, i.e., binary, nominal or numerical features associated with an instance, while Linked Open Data sources are usually graphs by nature. Therefore, in Part I, we evaluate unsupervised feature generation strategies from types and relations in knowledge graphs, which are used in different data mining tasks, i.e., classification, regression, and outlier detection. As the number of generated features grows rapidly with the number of instances in the dataset, we provide a strategy for feature selection in hierarchical feature space, in order to select only the most informative and most representative features for a given dataset. Furthermore, we provide an end-to-end tool for mining the Web of Linked Data, which provides functionalities for each step of the knowledge discovery process, i.e., linking local data to a Semantic Web knowledge graph, integrating features from multiple knowledge graphs, feature generation and selection, and building machine learning models. However, we show that such feature generation strategies often lead to high dimensional feature vectors even after dimensionality reduction, and also, the reusability of such feature vectors across different datasets is limited. In Part II, we propose an approach that circumvents the shortcomings introduced with the approaches in Part I. More precisely, we develop an approach that is able to embed complete Semantic Web knowledge graphs in a low dimensional feature space, where each entity and relation in the knowledge graph is represented as a numerical vector. Projecting such latent representations of entities into a lower dimensional feature space shows that semantically similar entities appear closer to each other. We use several Semantic Web knowledge graphs to show that such latent representation of entities have high relevance for different data mining tasks. Furthermore, we show that such features can be easily reused for different datasets and different tasks. In Part III, we describe a list of applications that exploit Semantic Web knowledge graphs, besides the standard data mining tasks, like classification and regression. We show that the approaches developed in Part I and Part II can be used in applications in various domains. More precisely, we show that Semantic Web graphs can be exploited for analyzing statistics, building recommender systems, entity and document modeling, and taxonomy induction. %In Part III, we focus on semantic annotations in HTML pages, which are another realization of the Semantic Web vision. Semantic annotations are integrated into the code of HTML pages using markup languages, like Microformats, RDFa, and Microdata. While such data covers various domains and topics, and can be useful for developing various data mining applications, additional steps of cleaning and integrating the data need to be performed. In this thesis, we describe a set of approaches for processing long literals and images extracted from semantic annotations in HTML pages. We showcase the approaches in the e-commerce domain. Such approaches contribute in building and consuming Semantic Web knowledge graphs

    Automatic schema matching utilizing hypernymy relations extracted from the web

    Full text link
    This thesis explores how a large corpus of Is-a statements can be exploited for the task of schema matching

    Explainable Deep Learning

    Get PDF
    Il grande successo che il Deep Learning ha ottenuto in ambiti strategici per la nostra società quali l'industria, la difesa, la medicina etc., ha portanto sempre più realtà a investire ed esplorare l'utilizzo di questa tecnologia. Ormai si possono trovare algoritmi di Machine Learning e Deep Learning quasi in ogni ambito della nostra vita. Dai telefoni, agli elettrodomestici intelligenti fino ai veicoli che guidiamo. Quindi si può dire che questa tecnologia pervarsiva è ormai a contatto con le nostre vite e quindi dobbiamo confrontarci con essa. Da questo nasce l’eXplainable Artificial Intelligence o XAI, uno degli ambiti di ricerca che vanno per la maggiore al giorno d'oggi in ambito di Deep Learning e di Intelligenza Artificiale. Il concetto alla base di questo filone di ricerca è quello di rendere e/o progettare i nuovi algoritmi di Deep Learning in modo che siano affidabili, interpretabili e comprensibili all'uomo. Questa necessità è dovuta proprio al fatto che le reti neurali, modello matematico che sta alla base del Deep Learning, agiscono come una scatola nera, rendendo incomprensibile all'uomo il ragionamento interno che compiono per giungere ad una decisione. Dato che stiamo delegando a questi modelli matematici decisioni sempre più importanti, integrandole nei processi più delicati della nostra società quali, ad esempio, la diagnosi medica, la guida autonoma o i processi di legge, è molto importante riuscire a comprendere le motivazioni che portano questi modelli a produrre determinati risultati. Il lavoro presentato in questa tesi consiste proprio nello studio e nella sperimentazione di algoritmi di Deep Learning integrati con tecniche di Intelligenza Artificiale simbolica. Questa integrazione ha un duplice scopo: rendere i modelli più potenti, consentendogli di compiere ragionamenti o vincolandone il comportamento in situazioni complesse, e renderli interpretabili. La tesi affronta due macro argomenti: le spiegazioni ottenute grazie all'integrazione neuro-simbolica e lo sfruttamento delle spiegazione per rendere gli algoritmi di Deep Learning più capaci o intelligenti. Il primo macro argomento si concentra maggiormente sui lavori svolti nello sperimentare l'integrazione di algoritmi simbolici con le reti neurali. Un approccio è stato quelli di creare un sistema per guidare gli addestramenti delle reti stesse in modo da trovare la migliore combinazione di iper-parametri per automatizzare la progettazione stessa di queste reti. Questo è fatto tramite l'integrazione di reti neurali con la Programmazione Logica Probabilistica (PLP) che consente di sfruttare delle regole probabilistiche indotte dal comportamento delle reti durante la fase di addestramento o ereditate dall'esperienza maturata dagli esperti del settore. Queste regole si innescano allo scatenarsi di un problema che il sistema rileva durate l'addestramento della rete. Questo ci consente di ottenere una spiegazione di cosa è stato fatto per migliorare l'addestramento una volta identificato un determinato problema. Un secondo approccio è stato quello di far cooperare sistemi logico-probabilistici con reti neurali per la diagnosi medica da fonti di dati eterogenee. La seconda tematica affrontata in questa tesi tratta lo sfruttamento delle spiegazioni che possiamo ottenere dalle rete neurali. In particolare, queste spiegazioni sono usate per creare moduli di attenzione che aiutano a vincolare o a guidare le reti neurali portandone ad avere prestazioni migliorate. Tutti i lavori sviluppati durante il dottorato e descritti in questa tesi hanno portato alle pubblicazioni elencate nel Capitolo 14.2.The great success that Machine and Deep Learning has achieved in areas that are strategic for our society such as industry, defence, medicine, etc., has led more and more realities to invest and explore the use of this technology. Machine Learning and Deep Learning algorithms and learned models can now be found in almost every area of our lives. From phones to smart home appliances, to the cars we drive. So it can be said that this pervasive technology is now in touch with our lives, and therefore we have to deal with it. This is why eXplainable Artificial Intelligence or XAI was born, one of the research trends that are currently in vogue in the field of Deep Learning and Artificial Intelligence. The idea behind this line of research is to make and/or design the new Deep Learning algorithms so that they are interpretable and comprehensible to humans. This necessity is due precisely to the fact that neural networks, the mathematical model underlying Deep Learning, act like a black box, making the internal reasoning they carry out to reach a decision incomprehensible and untrustable to humans. As we are delegating more and more important decisions to these mathematical models, it is very important to be able to understand the motivations that lead these models to make certain decisions. This is because we have integrated them into the most delicate processes of our society, such as medical diagnosis, autonomous driving or legal processes. The work presented in this thesis consists in studying and testing Deep Learning algorithms integrated with symbolic Artificial Intelligence techniques. This integration has a twofold purpose: to make the models more powerful, enabling them to carry out reasoning or constraining their behaviour in complex situations, and to make them interpretable. The thesis focuses on two macro topics: the explanations obtained through neuro-symbolic integration and the exploitation of explanations to make the Deep Learning algorithms more capable or intelligent. The neuro-symbolic integration was addressed twice, by experimenting with the integration of symbolic algorithms with neural networks. A first approach was to create a system to guide the training of the networks themselves in order to find the best combination of hyper-parameters to automate the design of these networks. This is done by integrating neural networks with Probabilistic Logic Programming (PLP). This integration makes it possible to exploit probabilistic rules tuned by the behaviour of the networks during the training phase or inherited from the experience of experts in the field. These rules are triggered when a problem occurs during network training. This generates an explanation of what was done to improve the training once a particular issue was identified. A second approach was to make probabilistic logic systems cooperate with neural networks for medical diagnosis on heterogeneous data sources. The second topic addressed in this thesis concerns the exploitation of explanations. In particular, the explanations one can obtain from neural networks are used in order to create attention modules that help in constraining and improving the performance of neural networks. All works developed during the PhD and described in this thesis have led to the publications listed in Chapter 14.2

    Using Taxonomic Background Knowledge in Propositionalization and Rule

    No full text
    Abstract. Knowledge representations using semantic web technologies often provide information which translates to explicit term and predicate taxonomies in relational learning. Here we show how to speed up the process of propositionalization of relational data by orders of magnitude, by exploiting such ontologies through a novel refinement operator used in the construction of conjunctive relational features. Moreover, we accelerate the subsequent search conducted by a propositional learning algorithm by providing it with information on feature generality taxonomy, determined from the initial term and predicate taxonomies but also accounting for traditional θ-subsumption between features. This information enables the propositional rule learner to prevent the exploration of useless conjunctions containing a feature together with any of its subsumees and to specialize a rule by replacing a feature by its subsumee. We investigate our approach with a propositionalization algorithm, a deterministic top-down propositional rule learner, and a recently proposed propositional rule learner based on stochastic local search. Experimental results on genomic and engineering data [2] indicate striking runtime improvements of the propositionalization process and the subsequent propositional learning.

    Semantic Biclustering

    Get PDF
    Tato disertační práce se zaměřuje na problém hledání interpretovatelných a prediktivních vzorů, které jsou vyjádřeny formou dvojshluků, se specializací na biologická data. Prezentované metody jsou souhrnně označovány jako sémantické dvojshlukování, jedná se o podobor dolování dat. Termín sémantické dvojshlukování je použit z toho důvodu, že zohledňuje proces hledání koherentních podmnožin řádků a sloupců, tedy dvojshluků, v 2-dimensionální binární matici a zárove ň bere také v potaz sémantický význam prvků v těchto dvojshlucích. Ačkoliv byla práce motivována biologicky orientovanými daty, vyvinuté algoritmy jsou obecně aplikovatelné v jakémkoli jiném výzkumném oboru. Je nutné pouze dodržet požadavek na formát vstupních dat. Disertační práce představuje dva originální a v tomto ohledu i základní přístupy pro hledání sémantických dvojshluků, jako je Bicluster enrichment analysis a Rule a tree learning. Jelikož tyto metody nevyužívají vlastní hierarchické uspořádání termů v daných ontologiích, obecně je běh těchto algoritmů dlouhý čin může docházet k indukci hypotéz s redundantními termy. Z toho důvodu byl vytvořen nový operátor zjemnění. Tento operátor byl včleněn do dobře známého algoritmu CN2, kde zavádí dvě redukční procedury: Redundant Generalization a Redundant Non-potential. Obě procedury pomáhají dramaticky prořezat prohledávaný prostor pravidel a tím umožňují urychlit proces indukce pravidel v porovnání s tradičním operátorem zjemnění tak, jak je původně prezentován v CN2. Celý algoritmus spolu s redukčními metodami je publikován ve formě R balííčku, který jsme nazvali sem1R. Abychom ukázali i možnost praktického užití metody sémantického dvojshlukování na reálných biologických problémech, v disertační práci dále popisujeme a specificky upravujeme algoritmus sem1R pro dv+ úlohy. Zaprvé, studujeme praktickou aplikaci algoritmu sem1R v analýze E-3 ubikvitin ligázy v trávicí soustavě s ohledem na potenciál regenerace tkáně. Zadruhé, kromě objevování dvojshluků v dat ech genové exprese, adaptujeme algoritmus sem1R pro hledání potenciálne patogenních genetických variant v kohortě pacientů.This thesis focuses on the problem of finding interpretable and predic tive patterns, which are expressed in the form of biclusters, with an orientation to biological data. The presented methods are collectively called semantic biclustering, as a subfield of data mining. The term semantic biclustering is used here because it reflects both a process of finding coherent subsets of rows and columns in a 2-dimensional binary matrix and simultaneously takes into account a mutual semantic meaning of elements in such biclusters. In spite of focusing on applications of algorithms in biological data, the developed algorithms are generally applicable to any other research field, there are only limitations on the format of the input data. The thesis introduces two novel, and in that context basic, approaches for finding semantic biclusters, as Bicluster enrichment analysis and Rule and tree learning. Since these methods do not exploit the native hierarchical order of terms of input ontologies, the run-time of algorithms is relatively long in general or an induced hypothesis might have terms that are redundant. For this reason, a new refinement operator has been invented. The refinement operator was incorporated into the well-known CN2 algorithm and uses two reduction procedures: Redundant Generalization and Redundant Non-potential, both of which help to dramatically prune the rule space and consequently, speed-up the entire process of rule induction in comparison with the traditional refinement operator as is presented in CN2. The reduction procedures were published as an R package that we called sem1R. To show a possible practical usage of semantic biclustering in real biological problems, the thesis also describes and specifically adapts the algorithm for two real biological problems. Firstly, we studied a practical application of sem1R algorithm in an analysis of E-3 ubiquitin ligase in the gastrointestinal tract with respect to tissue regeneration potential. Secondly, besides discovering biclusters in gene expression data, we adapted the sem1R algorithm for a different task, concretely for finding potentially pathogenic genetic variants in a cohort of patients

    Exploiting Term, Predicate, and Feature Taxonomies in Propositionalization and Propositional Rule Learning

    No full text
    Knowledge representations using semantic web technologies often provide information which translates to explicit term and predicate taxonomies in relational learning. We show how to speed up the propositionalization by orders of magnitude, by exploiting such taxonomies through a novel refinement operator used in the construction of conjunctive relational features. Moreover, we accelerate the subsequent propositional search using feature generality taxonomy, determined from the initial term and predicate taxonomies and θ-subsumption between features. This enables the propositional rule learner to prevent the exploration of conjunctions containing a feature together with any of its subsumees and to specialize a rule by replacing a feature by its subsumee. We investigate our approach with a deterministic top-down propositional rule learner, and propositional rule learner based on stochastic local search

    STAIRS 2014:proceedings of the 7th European Starting AI Researcher Symposium

    Get PDF

    Kernel Methods for Knowledge Structures

    Get PDF

    Reasoning with Contexts in Description Logics

    Get PDF
    Harmelen, F.A.H. van [Promotor]Schlobach, K.S. [Copromotor

    Exploiting general-purpose background knowledge for automated schema matching

    Full text link
    The schema matching task is an integral part of the data integration process. It is usually the first step in integrating data. Schema matching is typically very complex and time-consuming. It is, therefore, to the largest part, carried out by humans. One reason for the low amount of automation is the fact that schemas are often defined with deep background knowledge that is not itself present within the schemas. Overcoming the problem of missing background knowledge is a core challenge in automating the data integration process. In this dissertation, the task of matching semantic models, so-called ontologies, with the help of external background knowledge is investigated in-depth in Part I. Throughout this thesis, the focus lies on large, general-purpose resources since domain-specific resources are rarely available for most domains. Besides new knowledge resources, this thesis also explores new strategies to exploit such resources. A technical base for the development and comparison of matching systems is presented in Part II. The framework introduced here allows for simple and modularized matcher development (with background knowledge sources) and for extensive evaluations of matching systems. One of the largest structured sources for general-purpose background knowledge are knowledge graphs which have grown significantly in size in recent years. However, exploiting such graphs is not trivial. In Part III, knowledge graph em- beddings are explored, analyzed, and compared. Multiple improvements to existing approaches are presented. In Part IV, numerous concrete matching systems which exploit general-purpose background knowledge are presented. Furthermore, exploitation strategies and resources are analyzed and compared. This dissertation closes with a perspective on real-world applications
    corecore