49 research outputs found

    STAR: A Concise Deep Learning Framework for Citywide Human Mobility Prediction

    Full text link
    Human mobility forecasting in a city is of utmost importance to transportation and public safety, but with the process of urbanization and the generation of big data, intensive computing and determination of mobility pattern have become challenging. This study focuses on how to improve the accuracy and efficiency of predicting citywide human mobility via a simpler solution. A spatio-temporal mobility event prediction framework based on a single fully-convolutional residual network (STAR) is proposed. STAR is a highly simple, general and effective method for learning a single tensor representing the mobility event. Residual learning is utilized for training the deep network to derive the detailed result for scenarios of citywide prediction. Extensive benchmark evaluation results on real-world data demonstrate that STAR outperforms state-of-the-art approaches in single- and multi-step prediction while utilizing fewer parameters and achieving higher efficiency.Comment: Accepted by MDM 201

    Bridging the Gap Between Training and Inference for Spatio-Temporal Forecasting

    Get PDF
    Spatio-temporal sequence forecasting is one of the fundamental tasks in spatio-temporal data mining. It facilitates many real world applications such as precipitation nowcasting, citywide crowd flow prediction and air pollution forecasting. Recently, a few Seq2Seq based approaches have been proposed, but one of the drawbacks of Seq2Seq models is that, small errors can accumulate quickly along the generated sequence at the inference stage due to the different distributions of training and inference phase. That is because Seq2Seq models minimise single step errors only during training, however the entire sequence has to be generated during the inference phase which generates a discrepancy between training and inference. In this work, we propose a novel curriculum learning based strategy named Temporal Progressive Growing Sampling to effectively bridge the gap between training and inference for spatio-temporal sequence forecasting, by transforming the training process from a fully-supervised manner which utilises all available previous ground-truth values to a less-supervised manner which replaces some of the ground-truth context with generated predictions. To do that we sample the target sequence from midway outputs from intermediate models trained with bigger timescales through a carefully designed decaying strategy. Experimental results demonstrate that our proposed method better models long term dependencies and outperforms baseline approaches on two competitive datasets.Comment: ECAI 2020 Accepted, preprin

    Bridging the gap between training and inference for spatio-temporal forecasting

    Get PDF
    Spatio-temporal sequence forecasting is one of the fundamental tasks in spatio-temporal data mining. It facilitates many real world applications such as precipitation now casting, city wide crowd flow prediction and air pollution forecasting. Recently, a few Seq2Seq based approaches have been proposed, but one of the drawbacks of Seq2Seq models is that, small errors can accumulate quickly along the generated sequence at the inference stage due to the different distributions of training and inference phase. That is because Seq2Seq models minimise single step errors only during training, however the entire sequence has to be generated during the inference phase which generates a discrepancy between training and inference. In this work, we propose a novel curriculum learning based strategy named Temporal Progressive Growing Sampling to effectively bridge the gap between training and inference for spatio-temporal sequence forecasting, by transformin the training process from a fully-supervised manner which utilises all available previous groundtruth values to a less-supervised manner which replaces some of theground-truth context with generated predictions. To do that we sam-ple the target sequence from midway outputs from intermediate models trained with bigger timescales through a carefully designed decaying strategy. Experimental results demonstrate that our proposed method better models long term dependencies and outperforms baseline approaches on two competitive datasets

    Recent Advances in Graph-based Machine Learning for Applications in Smart Urban Transportation Systems

    Full text link
    The Intelligent Transportation System (ITS) is an important part of modern transportation infrastructure, employing a combination of communication technology, information processing and control systems to manage transportation networks. This integration of various components such as roads, vehicles, and communication systems, is expected to improve efficiency and safety by providing better information, services, and coordination of transportation modes. In recent years, graph-based machine learning has become an increasingly important research focus in the field of ITS aiming at the development of complex, data-driven solutions to address various ITS-related challenges. This chapter presents background information on the key technical challenges for ITS design, along with a review of research methods ranging from classic statistical approaches to modern machine learning and deep learning-based approaches. Specifically, we provide an in-depth review of graph-based machine learning methods, including basic concepts of graphs, graph data representation, graph neural network architectures and their relation to ITS applications. Additionally, two case studies of graph-based ITS applications proposed in our recent work are presented in detail to demonstrate the potential of graph-based machine learning in the ITS domain

    Predictive spatio-temporal modelling with neural networks

    Get PDF
    Hongbin Liu studied the predictive spatio-temporal modelling using Neural Networks. Predictive spatio-temporal modelling is a challenge task due to the complex non-linear spatio-temporal dependencies, data sparsity and uncertainty. Hongbin Liu investigated the modelling difficulties and proposed three novel models to tackle the difficulties for three common spatio-temporal datasets. He also conducted extensive experiments on several real-world datasets for various spatio-temporal prediction tasks, such as travel mode classification, next-location prediction, weather forecasting and meteorological imagery prediction. The results show our proposed models consistently achieve exceptional improvements over state-of-the-art baselines

    Towards better traffic volume estimation: Tackling both underdetermined and non-equilibrium problems via a correlation-adaptive graph convolution network

    Full text link
    Traffic volume is an indispensable ingredient to provide fine-grained information for traffic management and control. However, due to limited deployment of traffic sensors, obtaining full-scale volume information is far from easy. Existing works on this topic primarily focus on improving the overall estimation accuracy of a particular method and ignore the underlying challenges of volume estimation, thereby having inferior performances on some critical tasks. This paper studies two key problems with regard to traffic volume estimation: (1) underdetermined traffic flows caused by undetected movements, and (2) non-equilibrium traffic flows arise from congestion propagation. Here we demonstrate a graph-based deep learning method that can offer a data-driven, model-free and correlation adaptive approach to tackle the above issues and perform accurate network-wide traffic volume estimation. Particularly, in order to quantify the dynamic and nonlinear relationships between traffic speed and volume for the estimation of underdetermined flows, a speed patternadaptive adjacent matrix based on graph attention is developed and integrated into the graph convolution process, to capture non-local correlations between sensors. To measure the impacts of non-equilibrium flows, a temporal masked and clipped attention combined with a gated temporal convolution layer is customized to capture time-asynchronous correlations between upstream and downstream sensors. We then evaluate our model on a real-world highway traffic volume dataset and compare it with several benchmark models. It is demonstrated that the proposed model achieves high estimation accuracy even under 20% sensor coverage rate and outperforms other baselines significantly, especially on underdetermined and non-equilibrium flow locations. Furthermore, comprehensive quantitative model analysis are also carried out to justify the model designs
    corecore