284 research outputs found

    Graph-Based Methods for Discovery Browsing with Semantic Predications

    Get PDF
    We present an extension to literature-based discovery that goes beyond making discoveries to a principled way of navigating through selected aspects of some biomedical domain. The method is a type of “discovery browsing” that guides the user through the research literature on a specified phenomenon. Poorly understood relationships may be explored through novel points of view, and potentially interesting relationships need not be known ahead of time. In a process of “cooperative reciprocity” the user iteratively focuses system output, thus controlling the large number of relationships often generated in literature-based discovery systems. The underlying technology exploits SemRep semantic predications represented as a graph of interconnected nodes (predication arguments) and edges (predicates). The system suggests paths in this graph, which represent chains of relationships. The methodology is illustrated with depressive disorder and focuses on the interaction of inflammation, circadian phenomena, and the neurotransmitter norepinephrine. Insight provided may contribute to enhanced understanding of the pathophysiology, treatment, and prevention of this disorder

    Automatic summarising: factors and directions

    Full text link
    This position paper suggests that progress with automatic summarising demands a better research methodology and a carefully focussed research strategy. In order to develop effective procedures it is necessary to identify and respond to the context factors, i.e. input, purpose, and output factors, that bear on summarising and its evaluation. The paper analyses and illustrates these factors and their implications for evaluation. It then argues that this analysis, together with the state of the art and the intrinsic difficulty of summarising, imply a nearer-term strategy concentrating on shallow, but not surface, text analysis and on indicative summarising. This is illustrated with current work, from which a potentially productive research programme can be developed

    Relation Prediction over Biomedical Knowledge Bases for Drug Repositioning

    Get PDF
    Identifying new potential treatment options for medical conditions that cause human disease burden is a central task of biomedical research. Since all candidate drugs cannot be tested with animal and clinical trials, in vitro approaches are first attempted to identify promising candidates. Likewise, identifying other essential relations (e.g., causation, prevention) between biomedical entities is also critical to understand biomedical processes. Hence, it is crucial to develop automated relation prediction systems that can yield plausible biomedical relations to expedite the discovery process. In this dissertation, we demonstrate three approaches to predict treatment relations between biomedical entities for the drug repositioning task using existing biomedical knowledge bases. Our approaches can be broadly labeled as link prediction or knowledge base completion in computer science literature. Specifically, first we investigate the predictive power of graph paths connecting entities in the publicly available biomedical knowledge base, SemMedDB (the entities and relations constitute a large knowledge graph as a whole). To that end, we build logistic regression models utilizing semantic graph pattern features extracted from the SemMedDB to predict treatment and causative relations in Unified Medical Language System (UMLS) Metathesaurus. Second, we study matrix and tensor factorization algorithms for predicting drug repositioning pairs in repoDB, a general purpose gold standard database of approved and failed drug–disease indications. The idea here is to predict repoDB pairs by approximating the given input matrix/tensor structure where the value of a cell represents the existence of a relation coming from SemMedDB and UMLS knowledge bases. The essential goal is to predict the test pairs that have a blank cell in the input matrix/tensor based on the shared biomedical context among existing non-blank cells. Our final approach involves graph convolutional neural networks where entities and relation types are embedded in a vector space involving neighborhood information. Basically, we minimize an objective function to guide our model to concept/relation embeddings such that distance scores for positive relation pairs are lower than those for the negative ones. Overall, our results demonstrate that recent link prediction methods applied to automatically curated, and hence imprecise, knowledge bases can nevertheless result in high accuracy drug candidate prediction with appropriate configuration of both the methods and datasets used

    Argument-predicate distance as a filter for enhancing precision in extracting predications on the genetic etiology of disease

    Get PDF
    BACKGROUND: Genomic functional information is valuable for biomedical research. However, such information frequently needs to be extracted from the scientific literature and structured in order to be exploited by automatic systems. Natural language processing is increasingly used for this purpose although it inherently involves errors. A postprocessing strategy that selects relations most likely to be correct is proposed and evaluated on the output of SemGen, a system that extracts semantic predications on the etiology of genetic diseases. Based on the number of intervening phrases between an argument and its predicate, we defined a heuristic strategy to filter the extracted semantic relations according to their likelihood of being correct. We also applied this strategy to relations identified with co-occurrence processing. Finally, we exploited postprocessed SemGen predications to investigate the genetic basis of Parkinson's disease. RESULTS: The filtering procedure for increased precision is based on the intuition that arguments which occur close to their predicate are easier to identify than those at a distance. For example, if gene-gene relations are filtered for arguments at a distance of 1 phrase from the predicate, precision increases from 41.95% (baseline) to 70.75%. Since this proximity filtering is based on syntactic structure, applying it to the results of co-occurrence processing is useful, but not as effective as when applied to the output of natural language processing. In an effort to exploit SemGen predications on the etiology of disease after increasing precision with postprocessing, a gene list was derived from extracted information enhanced with postprocessing filtering and was automatically annotated with GFINDer, a Web application that dynamically retrieves functional and phenotypic information from structured biomolecular resources. Two of the genes in this list are likely relevant to Parkinson's disease but are not associated with this disease in several important databases on genetic disorders. CONCLUSION: Information based on the proximity postprocessing method we suggest is of sufficient quality to be profitably used for subsequent applications aimed at uncovering new biomedical knowledge. Although proximity filtering is only marginally effective for enhancing the precision of relations extracted with co-occurrence processing, it is likely to benefit methods based, even partially, on syntactic structure, regardless of the relation

    Automatic Identification of Interestingness in Biomedical Literature

    Get PDF
    This thesis presents research on automatically identifying interestingness in a graph of semantic predications. Interestingness represents a subjective quality of information that represents its value in meeting a user\u27s known or unknown retrieval needs. The perception of information as interesting requires a level of utility for the user as well as a balance between significant novelty and sufficient familiarity. It can also be influenced by additional factors such as unexpectedness or serendipity with recent experiences. The ability to identify interesting information facilitates the development of user-centered retrieval, especially in information semantic summarization and iterative, step-wise searching such as in discovery browsing systems. Ultimately, this allows biomedical researchers to more quickly identify information of greatest potential interest to them, whether expected or, perhaps more importantly, unexpected. Current discovery browsing systems use iterative information retrieval to discover new knowledge - a process that requires finding relevant co-occurring topics and relationships through consistent human involvement to identify interesting concepts. Although interestingness is subjective, this thesis identifies computable quantities in semantic data that correlate to interestingness in user searches. We compare several statistical and rule-based models correlating graph data extracted from semantic predications with concept interestingness as demonstrated in PubMed queries. Semantic predications represent scientific assertions extracted from all of the biomedical literature contained in the MEDLINE database. They are of the form, subject-predicate-object . Predications can easily be represented as graphs, where subjects and objects are nodes and predicates form edges. A graph of predications represents the assertions made in the citations from which the predications were extracted. This thesis uses graph metrics to identify features from the predication graph for model generation. These features are based on degree centrality (connectedness) of the seed concept node and surrounding nodes; they are also based on frequency of occurrence measures of the edges between the seed concept and surrounding nodes as well as between the nodes surrounding the seed concept and the neighbors of those nodes. A PubMed query log is used for training and testing models for interestingness. This log contains a set of user searches over a 24-hour period, and we make the assumption that co-occurrence of concepts with the seed concept in searches demonstrates interestingness of that concept with regard to the seed concept. Graph generation begins by the selection of a set of all predications containing the seed concept from the Semantic Medline database (our training dataset uses Alzheimer\u27s disease as the seed concept). The graph is built with the seed concept as the central node. Additional nodes are added for each concept that occurs with the seed concept in the initial predications and an edge is created for each instance of a predication containing the two concepts. The edges are labeled with the specific predicate in the predication. This graph is extended to include additional nodes within two leaps from the seed concept. The concepts in the PubMed query logs are normalized to UMLS concepts or Entrez Gene symbols using MetaMap. Token-based and user-based counts are collected for each co-occurring term. These measures are combined to create a weighted score which is used to determine three potential thresholds of interestingness based on deviation from the mean score. The concepts that are included in both the graph and the normalized log data are identified for use in model training and testing

    Argument-predicate distance as a filter for enhancing precision in extracting predications on the genetic etiology of disease

    Get PDF
    BACKGROUND: Genomic functional information is valuable for biomedical research. However, such information frequently needs to be extracted from the scientific literature and structured in order to be exploited by automatic systems. Natural language processing is increasingly used for this purpose although it inherently involves errors. A postprocessing strategy that selects relations most likely to be correct is proposed and evaluated on the output of SemGen, a system that extracts semantic predications on the etiology of genetic diseases. Based on the number of intervening phrases between an argument and its predicate, we defined a heuristic strategy to filter the extracted semantic relations according to their likelihood of being correct. We also applied this strategy to relations identified with co-occurrence processing. Finally, we exploited postprocessed SemGen predications to investigate the genetic basis of Parkinson's disease. RESULTS: The filtering procedure for increased precision is based on the intuition that arguments which occur close to their predicate are easier to identify than those at a distance. For example, if gene-gene relations are filtered for arguments at a distance of 1 phrase from the predicate, precision increases from 41.95% (baseline) to 70.75%. Since this proximity filtering is based on syntactic structure, applying it to the results of co-occurrence processing is useful, but not as effective as when applied to the output of natural language processing. In an effort to exploit SemGen predications on the etiology of disease after increasing precision with postprocessing, a gene list was derived from extracted information enhanced with postprocessing filtering and was automatically annotated with GFINDer, a Web application that dynamically retrieves functional and phenotypic information from structured biomolecular resources. Two of the genes in this list are likely relevant to Parkinson's disease but are not associated with this disease in several important databases on genetic disorders. CONCLUSION: Information based on the proximity postprocessing method we suggest is of sufficient quality to be profitably used for subsequent applications aimed at uncovering new biomedical knowledge. Although proximity filtering is only marginally effective for enhancing the precision of relations extracted with co-occurrence processing, it is likely to benefit methods based, even partially, on syntactic structure, regardless of the relation

    Clustering cliques for graph-based summarization of the biomedical research literature

    Get PDF
    BACKGROUND: Graph-based notions are increasingly used in biomedical data mining and knowledge discovery tasks. In this paper, we present a clique-clustering method to automatically summarize graphs of semantic predications produced from PubMed citations (titles and abstracts). RESULTS: SemRep is used to extract semantic predications from the citations returned by a PubMed search. Cliques were identified from frequently occurring predications with highly connected arguments filtered by degree centrality. Themes contained in the summary were identified with a hierarchical clustering algorithm based on common arguments shared among cliques. The validity of the clusters in the summaries produced was compared to the Silhouette-generated baseline for cohesion, separation and overall validity. The theme labels were also compared to a reference standard produced with major MeSH headings. CONCLUSIONS: For 11 topics in the testing data set, the overall validity of clusters from the system summary was 10% better than the baseline (43% versus 33%). While compared to the reference standard from MeSH headings, the results for recall, precision and F-score were 0.64, 0.65, and 0.65 respectively

    Semantic Approaches for Knowledge Discovery and Retrieval in Biomedicine

    Get PDF
    • …
    corecore