72 research outputs found

    A survey of emerging architectural techniques for improving cache energy consumption

    Get PDF
    The search goes on for another ground breaking phenomenon to reduce the ever-increasing disparity between the CPU performance and storage. There are encouraging breakthroughs in enhancing CPU performance through fabrication technologies and changes in chip designs but not as much luck has been struck with regards to the computer storage resulting in material negative system performance. A lot of research effort has been put on finding techniques that can improve the energy efficiency of cache architectures. This work is a survey of energy saving techniques which are grouped on whether they save the dynamic energy, leakage energy or both. Needless to mention, the aim of this work is to compile a quick reference guide of energy saving techniques from 2013 to 2016 for engineers, researchers and students

    Dynamics of reconfigurable artificial spin ice: toward magnonic functional materials

    Get PDF
    Over the past few years, the study of magnetization dynamics in artificial spin ices has become a vibrant field of study. Artificial spin ices are ensembles of geometrically arranged, interacting magnetic nanoislands, which display frustration by design. These were initially created to mimic the behavior in rare earth pyrochlore materials and to study emergent behavior and frustration using two-dimensional magnetic measurement techniques. Recently, it has become clear that it is possible to create artificial spin ices, which can potentially be used as functional materials. In this perspective, we review the resonant behavior of spin ices in the GHz frequency range, focusing on their potential application as magnonic crystals. In magnonic crystals, spin waves are functionalized for logic applications by means of band structure engineering. While it has been established that artificial spin ices can possess rich mode spectra, the applicability of spin ices to create magnonic crystals hinges upon their reconfigurability. Consequently, we describe recent work aiming to develop techniques and create geometries allowing full reconfigurability of the spin ice magnetic state. We also discuss experimental, theoretical, and numerical methods for determining the spectral response of artificial spin ices and give an outlook on new directions for reconfigurable spin ices

    Dependable Embedded Systems

    Get PDF
    This Open Access book introduces readers to many new techniques for enhancing and optimizing reliability in embedded systems, which have emerged particularly within the last five years. This book introduces the most prominent reliability concerns from today’s points of view and roughly recapitulates the progress in the community so far. Unlike other books that focus on a single abstraction level such circuit level or system level alone, the focus of this book is to deal with the different reliability challenges across different levels starting from the physical level all the way to the system level (cross-layer approaches). The book aims at demonstrating how new hardware/software co-design solution can be proposed to ef-fectively mitigate reliability degradation such as transistor aging, processor variation, temperature effects, soft errors, etc. Provides readers with latest insights into novel, cross-layer methods and models with respect to dependability of embedded systems; Describes cross-layer approaches that can leverage reliability through techniques that are pro-actively designed with respect to techniques at other layers; Explains run-time adaptation and concepts/means of self-organization, in order to achieve error resiliency in complex, future many core systems

    Heterogeneous Reconfigurable Fabrics for In-circuit Training and Evaluation of Neuromorphic Architectures

    Get PDF
    A heterogeneous device technology reconfigurable logic fabric is proposed which leverages the cooperating advantages of distinct magnetic random access memory (MRAM)-based look-up tables (LUTs) to realize sequential logic circuits, along with conventional SRAM-based LUTs to realize combinational logic paths. The resulting Hybrid Spin/Charge FPGA (HSC-FPGA) using magnetic tunnel junction (MTJ) devices within this topology demonstrates commensurate reductions in area and power consumption over fabrics having LUTs constructed with either individual technology alone. Herein, a hierarchical top-down design approach is used to develop the HSCFPGA starting from the configurable logic block (CLB) and slice structures down to LUT circuits and the corresponding device fabrication paradigms. This facilitates a novel architectural approach to reduce leakage energy, minimize communication occurrence and energy cost by eliminating unnecessary data transfer, and support auto-tuning for resilience. Furthermore, HSC-FPGA enables new advantages of technology co-design which trades off alternative mappings between emerging devices and transistors at runtime by allowing dynamic remapping to adaptively leverage the intrinsic computing features of each device technology. HSC-FPGA offers a platform for fine-grained Logic-In-Memory architectures and runtime adaptive hardware. An orthogonal dimension of fabric heterogeneity is also non-determinism enabled by either low-voltage CMOS or probabilistic emerging devices. It can be realized using probabilistic devices within a reconfigurable network to blend deterministic and probabilistic computational models. Herein, consider the probabilistic spin logic p-bit device as a fabric element comprising a crossbar-structured weighted array. The Programmability of the resistive network interconnecting p-bit devices can be achieved by modifying the resistive states of the array\u27s weighted connections. Thus, the programmable weighted array forms a CLB-scale macro co-processing element with bitstream programmability. This allows field programmability for a wide range of classification problems and recognition tasks to allow fluid mappings of probabilistic and deterministic computing approaches. In particular, a Deep Belief Network (DBN) is implemented in the field using recurrent layers of co-processing elements to form an n x m1 x m2 x ::: x mi weighted array as a configurable hardware circuit with an n-input layer followed by i ≥ 1 hidden layers. As neuromorphic architectures using post-CMOS devices increase in capability and network size, the utility and benefits of reconfigurable fabrics of neuromorphic modules can be anticipated to continue to accelerate

    Enabling Reliable, Efficient, and Secure Computing for Energy Harvesting Powered IoT Devices

    Get PDF
    Energy harvesting is one of the most promising techniques to power devices for future generation IoT. While energy harvesting does not have longevity, safety, and recharging concerns like traditional batteries, its instability brings a new challenge to the embedded systems: the energy harvested from environment is usually weak and intermittent. With traditional CMOS based technology, whenever the power is off, the computation has to start from the very beginning. Compared with existing CMOS based memory devices, emerging non-volatile memory devices such as PCM and STT-RAM, have the benefits of sustaining the data even when there is no power. By checkpointing the processor's volatile state to non-volatile memory, a program can resume its execution immediately after power comes back on again instead of restarting from the very beginning with checkpointing techniques. However, checkpointing is not sufficient for energy harvesting systems. First, the program execution resumed from the last checkpoint might not execute correctly and causes inconsistency problem to the system. This problem is due to the inconsistency between volatile system state and non-volatile system state during checkpointing. Second, the process of checkpointing consumes a considerable amount of energy and time due to the slow and energy-consuming write operation of non-volatile memory. Finally, connecting to the internet poses many security issues to energy harvesting IoT devices. Traditional data encryption methods are both energy and time consuming which do not fit the resource constrained IoT devices. Therefore, a light-weight encryption method is in urgent need for securing IoT devices. Targeting those three challenges, this dissertation proposes three techniques to enable reliable, efficient, and secure computing in energy harvesting IoT devices. First, a consistency-aware checkpointing technique is proposed to avoid inconsistency errors generated from the inconsistency between volatile state and non-volatile state. Second, checkpoint aware hybrid cache architecture is proposed to guarantee reliable checkpointing while maintaining a low checkpointing overhead from cache. Finally, to ensure the security of energy harvesting IoT devices, an energy-efficient in-memory encryption implementation for protecting the IoT device is proposed which can quickly encrypts the data in non-volatile memory and protect the embedded system physical and on-line attacks

    Architectural Solutions for NanoMagnet Logic

    Get PDF
    The successful era of CMOS technology is coming to an end. The limit on minimum fabrication dimensions of transistors and the increasing leakage power hinder the technological scaling that has characterized the last decades. In several different ways, this problem has been addressed changing the architectures implemented in CMOS, adopting parallel processors and thus increasing the throughput at the same operating frequency. However, architectural alternatives cannot be the definitive answer to a continuous increase in performance dictated by Moore’s law. This problem must be addressed from a technological point of view. Several alternative technologies that could substitute CMOS in next years are currently under study. Among them, magnetic technologies such as NanoMagnet Logic (NML) are interesting because they do not dissipate any leakage power. More- over, magnets have memory capability, so it is possible to merge logic and memory in the same device. However, magnetic circuits, and NML in this specific research, have also some important drawbacks that need to be addressed: first, the circuit clock frequency is limited to 100 MHz, to avoid errors in data propagation; second, there is a connection between circuit layout and timing, and in particular, longer wires will have longer latency. These drawbacks are intrinsic to the technology and for this reason they cannot be avoided. The only chance is to limit their impact from an architectural point of view. The first step followed in the research path of this thesis is indeed the choice and optimization of architectures able to deal with the problems of NML. Systolic Ar- rays are identified as an ideal solution for this technology, because they are regular structures with local interconnections that limit the long latency of wires; more- over they are composed of several Processing Elements that work in parallel, thus exploit parallelization to increase throughput (limiting the impact of the low clock frequency). Through the analysis of Systolic Arrays for NML, several possible im- provements have been identified and addressed: 1) it has been defined a rigorous way to increase throughput with interleaving, providing equations that allow to esti- mate the number of operations to be interleaved and the rules to provide inputs; 2) a latency insensitive circuit has been designed, that exploits a data communication protocol between processing elements to avoid data synchronization problems. This feature has been exploited to design a latency insensitive Systolic Array that is able to execute the Floyd-Steinberg dithering algorithm. All the improvements presented in this framework apply to Systolic Arrays implemented in any technology. So, they can also be exploited to increase performance of today’s CMOS parallel circuits. This research path is presented in Chapter 3. While Systolic Arrays are an interesting solution for NML, their usage could be quite limited because they are normally application-specific. The second re- search path addresses this problem. A Reconfigurable Systolic Array is presented, that can be programmed to execute several algorithms. This architecture has been tested implementing many algorithms, including FIR and IIR filters, Discrete Cosine Transform and Matrix Multiplication. This research path is presented in Chapter 4. In common Von Neumann architectures, the logic part of the circuit and the memory one are separated. Today bus communication between logic and memory represents the bottleneck of the system. This problem is addressed presenting Logic- In-Memory (LIM), an architecture where memory elements are merged in logic ones. This research path aims at defining a real LIM architectures. This has been done in two steps. The first step is represented by an architecture composed of three layers: memory, routing and logic. In the second step instead the routing plane is no more present, and its features are inherited by the memory plane. In this solution, a pyramidal memory model is used, where memories near logic elements contain the most probably used data, and other memory layers contain the remaining data and instruction set. This circuit has been tested with odd-even sort algorithms and it has been benchmarked against GPUs and ASIC. This research path is presented in Chapter 5. MagnetoElastic NML (ME-NML) is a technological improvement of the NML principle, proposed by researchers of Politecnico di Torino, where the clock system is based on the induced stretch of a piezoelectric substrate when a voltage is ap- plied to its boundaries. The main advantage of this solution is that it consumes much less power than the classic clock implementation. This technology has not yet been investigated from an architectural point of view and considering complex circuits. In this research field, a standard methodology for the design of ME-NML circuits has been proposed. It is based on a Standard Cell Library and an enhanced VHDL model. The effectiveness of this methodology has been proved designing a Galois Field Multiplier. Moreover the serial-parallel trade-off in ME-NML has been investigated, designing three different solutions for the Multiply and Accumulate structure. This research path is presented in Chapter 6. While ME-NML is an extremely interesting technology, it needs to be combined with other faster technologies to have a real competitive system. Signal interfaces between NML and other technologies (mainly CMOS) have been rarely presented in literature. A mixed-technology multiplexer is designed and presented as the basis for a CMOS to NML interface. The reverse interface (from ME-NML to CMOS) is instead based on a sensing circuit for the Faraday effect: a change in the polarization of a magnet induces an electric field that can be used to generate an input signal for a CMOS circuit. This research path is presented in Chapter 7. The research work presented in this thesis represents a fundamental milestone in the path towards nanotechnologies. The most important achievement is the de- sign and simulation of complex circuits with NML, benchmarking this technology with real application examples. The characterization of a technology considering complex functions is a major step to be performed and that has not yet been ad- dressed in literature for NML. Indeed, only in this way it is possible to intercept in advance any weakness of NanoMagnet Logic that cannot be discovered consid- ering only small circuits. Moreover, the architectural improvements introduced in this thesis, although technology-driven, can be actually applied to any technology. We have demonstrated the advantages that can derive applying them to CMOS cir- cuits. This thesis represents therefore a major step in two directions: the first is the enhancement of NML technology; the second is a general improvement of parallel architectures and the development of the new Logic-In-Memory paradigm

    Soft-Error Resilience Framework For Reliable and Energy-Efficient CMOS Logic and Spintronic Memory Architectures

    Get PDF
    The revolution in chip manufacturing processes spanning five decades has proliferated high performance and energy-efficient nano-electronic devices across all aspects of daily life. In recent years, CMOS technology scaling has realized billions of transistors within large-scale VLSI chips to elevate performance. However, these advancements have also continually augmented the impact of Single-Event Transient (SET) and Single-Event Upset (SEU) occurrences which precipitate a range of Soft-Error (SE) dependability issues. Consequently, soft-error mitigation techniques have become essential to improve systems\u27 reliability. Herein, first, we proposed optimized soft-error resilience designs to improve robustness of sub-micron computing systems. The proposed approaches were developed to deliver energy-efficiency and tolerate double/multiple errors simultaneously while incurring acceptable speed performance degradation compared to the prior work. Secondly, the impact of Process Variation (PV) at the Near-Threshold Voltage (NTV) region on redundancy-based SE-mitigation approaches for High-Performance Computing (HPC) systems was investigated to highlight the approach that can realize favorable attributes, such as reduced critical datapath delay variation and low speed degradation. Finally, recently, spin-based devices have been widely used to design Non-Volatile (NV) elements such as NV latches and flip-flops, which can be leveraged in normally-off computing architectures for Internet-of-Things (IoT) and energy-harvesting-powered applications. Thus, in the last portion of this dissertation, we design and evaluate for soft-error resilience NV-latching circuits that can achieve intriguing features, such as low energy consumption, high computing performance, and superior soft errors tolerance, i.e., concurrently able to tolerate Multiple Node Upset (MNU), to potentially become a mainstream solution for the aerospace and avionic nanoelectronics. Together, these objectives cooperate to increase energy-efficiency and soft errors mitigation resiliency of larger-scale emerging NV latching circuits within iso-energy constraints. In summary, addressing these reliability concerns is paramount to successful deployment of future reliable and energy-efficient CMOS logic and spintronic memory architectures with deeply-scaled devices operating at low-voltages
    • …
    corecore