33 research outputs found

    Delta STATCOM with partially rated energy storage for intended provision of ancillary services

    Get PDF
    This thesis presents research on two distinct areas, where the work carried out in the first half highlights the challenges posed by the declining system inertia in the future power systems and the potential capability of the energy storage systems in bridging the gap, supporting a safe and reliable operation. A comparison of various energy storage technologies based on their specific energy, specific power, response time, life-cycle, efficiency, cost and further correlating these characteristics to the timescale requirements of frequency and RoCoF services showed that supercapacitors (SC) and Li-ion batteries present the most suitable candidates. Results of a network stability study showed that for a power system rated at 2940 MVA with a high RES contribution of 1688 MVA, equating to 57% of the energy mix, during a power imbalance of 200 MW, an ESS designed to provide emulated inertia response (EIR) in isolation required a power and energy rating of 39.54 MW and 0.0365 MWh respectively. Similarly, providing primary frequency response (PFR) on its own required a power and energy rating of 114.52 MW and 2.14 MWh respectively. ESS providing these services in isolation was not able to maintain all the frequency operating limits and similar results were also seen in the case of the recently introduced Dynamic Containment service. However, with the introduction of a combined response capability, a significantly improved performance, comparable to that of the synchronous generators was observed. In order to maintain the RoCoF and the statutory frequency limit of 0.5 Hz/s and ±0.5 Hz respectively, an ESS must be able to respond with a delay time of no more than 0.2 seconds and be able to ramp up to full response within 0.3 seconds (0.5 seconds from the start of contingency) for a frequency deviation of ±0.5 Hz. The second half of the thesis focused on investigating the current state-of-the-art power conversion system topologies, with the objective of identifying a suitable topology for interfacing ESSs to the grid at MV level. A delta-connected Modular Multilevel STATCOM with partially rated storage (PRS-STATCOM) is proposed, capable of providing both reactive and active power support. The purpose is to provide short-term energy storage enabled grid support services such as inertial and frequency response, either alongside or temporarily instead of standard STATCOM voltage support. The topology proposed here contains two types of sub-modules (SM) in each phase-leg: standard sub-modules (STD-SMs) and energy storage element sub-modules (ESE-SMs) with a DC-DC interface converter between the SM capacitor and the ESE. A control structure has been developed that allows energy transfer between the SM capacitor and the ESE, resulting in an active power exchange between the converter and the grid. A 3rd harmonic current injection into the converter waveforms was used to increase the amount of power that can be extracted from the ESE-SMs and so reduce the required ESE-SMs fraction in each phase-leg. Simulation results demonstrate that for three selected active power ratings, 1 pu, 2/3 pu, & 1/3 pu, the fraction of SMs that need to be converted to ESE-SMs are only 69%, 59% & 38%. Thus, the proposed topology is effective in adding real power capability to a STATCOM without a large increase in equipment cost. Furthermore, modifying the initially proposed topology with the use of Silicon Carbide (SiC) switching devices and interleaved DC-DC interface converter with inverse coupled inductors resulted in similar efficiencies when operated in STATCOM mode.Open Acces

    MEDOW - Multi-terminal DC Grid for Offshore Wind, Final report

    Get PDF

    MEDOW - Multi-terminal DC Grid for Offshore Wind, Final report

    Get PDF

    Providing Virtual Inertia Through Power Electronics

    Full text link
    VSC-HVDC (voltage source converter based HVDC) system with its inherent merits for renewable energy integration has captured increasing research attentions. However, compared with AC systems dominated by synchronous generators (SGs), VSC-HVDC systems with general vector control cannot provide inertia for the grid due to lack of kinetic energy. This tends to degrade the safety and stability of the grid with the increasing penetration of renewable energy sources. To cope with this issue, virtual synchronous generator (VSG) has been proposed. In this thesis, firstly, a comprehensive introduction of various typologies of VSG schemes is made to illustrate their deficiencies and merits. The simulation results established in Simulink/Plecs show that VSG can not only participate into the regulation of frequency and voltage in case of power disturbances but guarantee the inertia provision for the grid. Although the integration of VSG control enhances the inertia and damping response of inverts, researches show that plenty of issues relative with VSG should be ameliorated. The fluctuation performances of SGs are introduced into the output active power and current of inverters when incorporates VSG control. This threatens the stability and safety of VSG operation, for power electronic based inverters are more vulnerable during the oscillations of current and frequency. Hence, to solve these issues, various enhanced VSG strategies have been constructed to improve its robustness and output performance. In this thesis, the structures and properties of enhanced VSG schemes are fully discussed. The results show that the dynamic properties of VSG during transient periods are enhanced in comparison of that of normal VSG. Modular multilevel converters (MMC) and alternate arm converters (AAC), as the representatives for enhanced topologies of VSC-HVDC system, have more complicated inner structures in comparison with 2/3 level converters. In this thesis, VSG control is applied into MMC/AAC models to strengthen their power and frequency regulation ability. In addition, a four-terminal multi terminal direct current (MTDC) system is incorporated with VSG control to provide primary frequency and voltage response for the grid. The results show that the integration of VSG improves the stability operation and inertia response of MMC/AAC/MTDC systems

    Design of power converters with embedded energy storage for hybrid DC-AC applications

    Get PDF
    The high penetration of renewable energies into power systems is leading to a revolution in the structure of modern power grids. In this context, the present thesis investigates the design of power electronics converters with extended capabilities due to the embedding of energy storage within the topologies. Thus, the research objective is to propose power converters with capabilities of integrating energy storage technologies to provide further services required for the operation of hybrid dc-ac systems. The thesis contains two parts, first part shows the work developed for low- and medium-power applications, while the second part describes the investigation performed for high-power systems. The first part of this thesis explains the design and operation of a three-port dc-dc-ac converter developed for integrating energy storage into hybrid dc-ac applications. The topology is based on a conventional two-level dc-ac converter, and it uses a single power conversion stage to control the power flow between three ports, minimising the required components. Simulation and experimental results validate the operation of the proposal, showing that a multi-variable control system allows exploiting the degrees of freedom to manage power interactions of multiple elements without needing extra power converters. Furthermore, a comparative analysis is carried on to showcase the advantages and limitations of the proposal as opposed to state-of-the-art solutions in the same context. The study concludes that the proposed topology is suitable for low- and medium-power systems with bidirectional power flow capabilities among all ports and limited voltage boost needs. Simulation analysis shows that efficiencies up to 95.94% can be reached for a 3 kW design, which compares to efficiencies of similar state-of-the-art topologies. Moreover, the operation is also validated in a reduced-scale prototype allowing to test the multi-variable control scheme in a real-time implementation. The second part of the thesis focuses on the design and operation of a Modular Multilevel Converter (MMC) topology with integrated energy storage using new parallel branches in the phases of the converter. This topology allows the integration of partially-rated Energy Storage Systems(ESS) to decouple the ac and dc sides of a High Voltage Direct Current~(HVDC) substation. Thus, it enables the provision of ancillary services such as fast frequency response, black-start capabilities and load-levelling, which are required by modern hybrid dc-ac power grids. Results show that the proposal allows the addition of up to 37% power from the ESS considering similarly rated power semiconductors in a simulated 1 GW MMC substation. Analysis shows that extra device losses remain under 1% for an additional +-10% of ESS power on top of the nominal substation-rated power. Furthermore, a laboratory-scale experimental rig was built to demonstrate the operation of the proposed design. In conclusion, two different topologies are proposed and analysed for integrating energy storage into hybrid dc-ac applications depending on the power rating required. The study is supported by simulation and experimental results obtained during the project to validate both proposals

    Thermal regulation and balancing in modular multilevel converters

    Get PDF
    Modular multilevel converters (MMCs) are envisaged as the key power electronic converter topology to enable a multi-terminal pan-European high voltage direct current (HVDC) Supergrid for the interconnection of offshore wind farms and exchange of energy between different countries. A key feature of MMCs in the large number of semiconductor devices employed in each converter station, distributed over a stack of series-connected sub-modules (SMs). These semiconductors possess strict thermal limits, which can constrain the operating range on the converter by limiting its capability of providing enhanced functionalities to the AC grid such as short-term power overloads. Furthermore, due to different loading conditions and ageing, significant temperature differences can exist between SMs which can lead to a very different lifetime expectancies for the semiconductor modules. This thesis proposes active thermal control methodologies to act of two distinct converter levels. Firstly, two novel dynamic rating strategies are proposed to define the converter current injection limit as a response to the maximum semiconductor temperature feedback. This enables the exploitation of the semiconductors thermal headroom to provide short-term power overloads, which can be used for the improvement of the frequency support of a power-distressed AC grid. Secondly, a SM-level temperature regulation and balancing algorithm is proposed, aiming at the equalisation of the maximum semiconductor die temperature in all the SMs of an MMC arm. The proposed methods are validated in a detailed and combined electro-thermal simulation model with 3 and 10 SMs per arm developed in MATLAB®/Simulink® using PLECS® Blockset. An experimental platform has been designed and utilised to verify the effectiveness of the dynamic rating strategies and the SM temperature regulation and balancing strategy

    DC/DC converter for offshore DC collection network

    Get PDF
    Large wind farms, especially large offshore wind farms, present a challenge for the electrical networks that will provide interconnection of turbines and onward transmission to the onshore power network. High wind farm capacity combined with a move to larger wind turbines will result in a large geographical footprint requiring a substantial sub-sea power network to provide internal interconnection. While advanced HVDC transmission has addressed the issue of long-distance transmission, internal wind farm power networks have seen relatively little innovation. Recent studies have highlighted the potential benefits of DC collection networks. First with appropriate selection of DC voltage, reduced losses can be expected. In addition, the size and weight of the electrical plant may also be reduced through the use of medium- or high-frequency transformers to step up the generator output voltage for connection to a medium-voltage network suitable for wide-area interconnection. However, achieving DC/DC conversion at the required voltage and power levels presents a significant challenge for wind-turbine power electronics.This thesis first proposes a modular DC/DC converter with input-parallel output-series connection, consisting of full-bridge DC/DC modules. A new master-slave control scheme is developed to ensure power sharing under all operating conditions, including during failure of a master module by allowing the status of master module to be reallocated to another healthy module. Secondly, a novel modular DC/DC converter with input-series-input-parallel output-series connection is presented. In addition, a robust control scheme is developed to ensure power sharing between practical modules even where modules have mismatched parameters or when there is a faulted module. Further, the control strategy is able to isolate faulted modules to ensure fault ride-through during internal module faults, whilst maintaining good transient performance. The ISIPOS connection is then applied to a converter with bidirectional power flow capability, realised using dual-active bridge modules.The small- and large-signal analyses of the proposed converters are performed in order to deduce the control structure for the converter input and output stages. Simulation and experimental results demonstrate and validate the proposed converters and associated control schemes.Large wind farms, especially large offshore wind farms, present a challenge for the electrical networks that will provide interconnection of turbines and onward transmission to the onshore power network. High wind farm capacity combined with a move to larger wind turbines will result in a large geographical footprint requiring a substantial sub-sea power network to provide internal interconnection. While advanced HVDC transmission has addressed the issue of long-distance transmission, internal wind farm power networks have seen relatively little innovation. Recent studies have highlighted the potential benefits of DC collection networks. First with appropriate selection of DC voltage, reduced losses can be expected. In addition, the size and weight of the electrical plant may also be reduced through the use of medium- or high-frequency transformers to step up the generator output voltage for connection to a medium-voltage network suitable for wide-area interconnection. However, achieving DC/DC conversion at the required voltage and power levels presents a significant challenge for wind-turbine power electronics.This thesis first proposes a modular DC/DC converter with input-parallel output-series connection, consisting of full-bridge DC/DC modules. A new master-slave control scheme is developed to ensure power sharing under all operating conditions, including during failure of a master module by allowing the status of master module to be reallocated to another healthy module. Secondly, a novel modular DC/DC converter with input-series-input-parallel output-series connection is presented. In addition, a robust control scheme is developed to ensure power sharing between practical modules even where modules have mismatched parameters or when there is a faulted module. Further, the control strategy is able to isolate faulted modules to ensure fault ride-through during internal module faults, whilst maintaining good transient performance. The ISIPOS connection is then applied to a converter with bidirectional power flow capability, realised using dual-active bridge modules.The small- and large-signal analyses of the proposed converters are performed in order to deduce the control structure for the converter input and output stages. Simulation and experimental results demonstrate and validate the proposed converters and associated control schemes

    Maintenance Management of Wind Turbines

    Get PDF
    “Maintenance Management of Wind Turbines” considers the main concepts and the state-of-the-art, as well as advances and case studies on this topic. Maintenance is a critical variable in industry in order to reach competitiveness. It is the most important variable, together with operations, in the wind energy industry. Therefore, the correct management of corrective, predictive and preventive politics in any wind turbine is required. The content also considers original research works that focus on content that is complementary to other sub-disciplines, such as economics, finance, marketing, decision and risk analysis, engineering, etc., in the maintenance management of wind turbines. This book focuses on real case studies. These case studies concern topics such as failure detection and diagnosis, fault trees and subdisciplines (e.g., FMECA, FMEA, etc.) Most of them link these topics with financial, schedule, resources, downtimes, etc., in order to increase productivity, profitability, maintainability, reliability, safety, availability, and reduce costs and downtime, etc., in a wind turbine. Advances in mathematics, models, computational techniques, dynamic analysis, etc., are employed in analytics in maintenance management in this book. Finally, the book considers computational techniques, dynamic analysis, probabilistic methods, and mathematical optimization techniques that are expertly blended to support the analysis of multi-criteria decision-making problems with defined constraints and requirements

    Applications of Power Electronics:Volume 1

    Get PDF
    corecore