12,824 research outputs found

    Methods combination and ML-based re-ranking of multiple hypothesis for question-answering systems

    Get PDF
    International audienceQuestion answering systems answer correctly to different questions because they are based on different strategies. In order to increase the number of questions which can be answered by a single process, we propose solutions to combine two question answering systems, QAVAL and RITEL. QAVAL proceeds by selecting short passages, annotates them by question terms, and then extracts from them answers which are ordered by a machine learning validation process. RITEL develops a multi-level analysis of questions and documents. Answers are extracted and ordered according to two strategies: by exploiting the redundancy of candidates and a Bayesian model. In order to merge the system results, we developed different methods either by merging passages before answer ordering, or by merging end-results. The fusion of end-results is realized by voting, merging, and by a machine learning process on answer characteristics, which lead to an improvement of the best system results of 19 %

    Query-based extracting: how to support the answer?

    Get PDF
    Human-made query-based summaries commonly contain information not explicitly asked for. They answer the user query, but also provide supporting information. In order to find this information in the source text, a graph is used to model the strength and type of relations between sentences of the query and document cluster, based on various features. The resulting extracts rank second in overall readability in the DUC 2006 evaluation. Employment of better question answering methods is the key to improve also content-based evaluation results

    A Diagram Is Worth A Dozen Images

    Full text link
    Diagrams are common tools for representing complex concepts, relationships and events, often when it would be difficult to portray the same information with natural images. Understanding natural images has been extensively studied in computer vision, while diagram understanding has received little attention. In this paper, we study the problem of diagram interpretation and reasoning, the challenging task of identifying the structure of a diagram and the semantics of its constituents and their relationships. We introduce Diagram Parse Graphs (DPG) as our representation to model the structure of diagrams. We define syntactic parsing of diagrams as learning to infer DPGs for diagrams and study semantic interpretation and reasoning of diagrams in the context of diagram question answering. We devise an LSTM-based method for syntactic parsing of diagrams and introduce a DPG-based attention model for diagram question answering. We compile a new dataset of diagrams with exhaustive annotations of constituents and relationships for over 5,000 diagrams and 15,000 questions and answers. Our results show the significance of our models for syntactic parsing and question answering in diagrams using DPGs

    Combining information seeking services into a meta supply chain of facts

    Get PDF
    The World Wide Web has become a vital supplier of information that allows organizations to carry on such tasks as business intelligence, security monitoring, and risk assessments. Having a quick and reliable supply of correct facts from perspective is often mission critical. By following design science guidelines, we have explored ways to recombine facts from multiple sources, each with possibly different levels of responsiveness and accuracy, into one robust supply chain. Inspired by prior research on keyword-based meta-search engines (e.g., metacrawler.com), we have adapted the existing question answering algorithms for the task of analysis and triangulation of facts. We present a first prototype for a meta approach to fact seeking. Our meta engine sends a user's question to several fact seeking services that are publicly available on the Web (e.g., ask.com, brainboost.com, answerbus.com, NSIR, etc.) and analyzes the returned results jointly to identify and present to the user those that are most likely to be factually correct. The results of our evaluation on the standard test sets widely used in prior research support the evidence for the following: 1) the value-added of the meta approach: its performance surpasses the performance of each supplier, 2) the importance of using fact seeking services as suppliers to the meta engine rather than keyword driven search portals, and 3) the resilience of the meta approach: eliminating a single service does not noticeably impact the overall performance. We show that these properties make the meta-approach a more reliable supplier of facts than any of the currently available stand-alone services

    Answering Complex Questions by Joining Multi-Document Evidence with Quasi Knowledge Graphs

    No full text
    Direct answering of questions that involve multiple entities and relations is a challenge for text-based QA. This problem is most pronounced when answers can be found only by joining evidence from multiple documents. Curated knowledge graphs (KGs) may yield good answers, but are limited by their inherent incompleteness and potential staleness. This paper presents QUEST, a method that can answer complex questions directly from textual sources on-the-fly, by computing similarity joins over partial results from different documents. Our method is completely unsupervised, avoiding training-data bottlenecks and being able to cope with rapidly evolving ad hoc topics and formulation style in user questions. QUEST builds a noisy quasi KG with node and edge weights, consisting of dynamically retrieved entity names and relational phrases. It augments this graph with types and semantic alignments, and computes the best answers by an algorithm for Group Steiner Trees. We evaluate QUEST on benchmarks of complex questions, and show that it substantially outperforms state-of-the-art baselines

    Exploiting the robot kinematic redundancy for emotion conveyance to humans as a lower priority task

    Get PDF
    Current approaches do not allow robots to execute a task and simultaneously convey emotions to users using their body motions. This paper explores the capabilities of the Jacobian null space of a humanoid robot to convey emotions. A task priority formulation has been implemented in a Pepper robot which allows the specification of a primary task (waving gesture, transportation of an object, etc.) and exploits the kinematic redundancy of the robot to convey emotions to humans as a lower priority task. The emotions, defined by Mehrabian as points in the pleasure–arousal–dominance space, generate intermediate motion features (jerkiness, activity and gaze) that carry the emotional information. A map from this features to the joints of the robot is presented. A user study has been conducted in which emotional motions have been shown to 30 participants. The results show that happiness and sadness are very well conveyed to the user, calm is moderately well conveyed, and fear is not well conveyed. An analysis on the dependencies between the motion features and the emotions perceived by the participants shows that activity correlates positively with arousal, jerkiness is not perceived by the user, and gaze conveys dominance when activity is low. The results indicate a strong influence of the most energetic motions of the emotional task and point out new directions for further research. Overall, the results show that the null space approach can be regarded as a promising mean to convey emotions as a lower priority task.Postprint (author's final draft

    Application and evaluation of multi-dimensional diversity

    Get PDF
    Traditional information retrieval (IR) systems mostly focus on finding documents relevant to queries without considering other documents in the search results. This approach works quite well in general cases; however, this also means that the set of returned documents in a result list can be very similar to each other. This can be an undesired system property from a user's perspective. The creation of IR systems that support the search result diversification present many challenges, indeed current evaluation measures and methodologies are still unclear with regards to specific search domains and dimensions of diversity. In this paper, we highlight various issues in relation to image search diversification for the ImageClef 2009 collection and tasks. Furthermore, we discuss the problem of defining clusters/subtopics by mixing diversity dimensions regardless of which dimension is important in relation to information need or circumstances. We also introduce possible applications and evaluation metrics for diversity based retrieval
    corecore