1,631 research outputs found

    Exploiting Parts-of-Speech for Effective Automated Requirements Traceability

    Get PDF
    Context: Requirement traceability (RT) is defined as the ability to describe and follow the life of a requirement. RT helps developers ensure that relevant requirements are implemented and that the source code is consistent with its requirement with respect to a set of traceability links called trace links. Previous work leverages Parts Of Speech (POS) tagging of software artifacts to recover trace links among them. These studies work on the premise that discarding one or more POS tags results in an improved accuracy of Information Retrieval (IR) techniques. Objective: First, we show empirically that excluding one or more POS tags could negatively impact the accuracy of existing IR-based traceability approaches, namely the Vector Space Model (VSM) and the Jensen Shannon Model (JSM). Second, we propose a method that improves the accuracy of IR-based traceability approaches. Method: We developed an approach, called ConPOS, to recover trace links using constraint-based pruning. ConPOS uses major POS categories and applies constraints to the recovered trace links for pruning as a filtering process to significantly improve the effectiveness of IR-based techniques. We conducted an experiment to provide evidence that removing POSs does not improve the accuracy of IR techniques. Furthermore, we conducted two empirical studies to evaluate the effectiveness of ConPOS in recovering trace links compared to existing peer RT approaches. Results: The results of the first empirical study show that removing one or more POS negatively impacts the accuracy of VSM and JSM. Furthermore, the results from the other empirical studies show that ConPOS provides 11%-107%, 8%-64%, and 15%-170% higher precision, recall, and mean average precision (MAP) than VSM and JSM. Conclusion: We showed that ConPosout performs existing IR-based RT approaches that discard some POS tags from the input documents

    Toward an Effective Automated Tracing Process

    Get PDF
    Traceability is defined as the ability to establish, record, and maintain dependency relations among various software artifacts in a software system, in both a forwards and backwards direction, throughout the multiple phases of the project’s life cycle. The availability of traceability information has been proven vital to several software engineering activities such as program comprehension, impact analysis, feature location, software reuse, and verification and validation (V&V). The research on automated software traceability has noticeably advanced in the past few years. Various methodologies and tools have been proposed in the literature to provide automatic support for establishing and maintaining traceability information in software systems. This movement is motivated by the increasing attention traceability has been receiving as a critical element of any rigorous software development process. However, despite these major advances, traceability implementation and use is still not pervasive in industry. In particular, traceability tools are still far from achieving performance levels that are adequate for practical applications. Such low levels of accuracy require software engineers working with traceability tools to spend a considerable amount of their time verifying the generated traceability information, a process that is often described as tedious, exhaustive, and error-prone. Motivated by these observations, and building upon a growing body of work in this area, in this dissertation we explore several research directions related to enhancing the performance of automated tracing tools and techniques. In particular, our work addresses several issues related to the various aspects of the IR-based automated tracing process, including trace link retrieval, performance enhancement, and the role of the human in the process. Our main objective is to achieve performance levels, in terms of accuracy, efficiency, and usability, that are adequate for practical applications, and ultimately to accomplish a successful technology transfer from research to industry

    What have we learnt from the challenges of (semi-) automated requirements traceability? A discussion on blockchain applicability.

    Get PDF
    Over the last 3 decades, researchers have attempted to shed light into the requirements traceability problem by introducing tracing tools, techniques, and methods with the vision of achieving ubiquitous traceability. Despite the technological advances, requirements traceability remains problematic for researchers and practitioners. This study aims to identify and investigate the main challenges in implementing (semi-)automated requirements traceability, as reported in the recent literature. A systematic literature review was carried out based on the guidelines for systematic literature reviews in software engineering, proposed by Kitchenham. We retrieved 4530 studies by searching five major bibliographic databases and selected 70 primary studies. These studies were analysed and classified according to the challenges they present and/or address. Twenty-one challenges were identified and were classified into five categories. Findings reveal that the most frequent challenges are technological challenges, in particular, low accuracy of traceability recovery methods. Findings also suggest that future research efforts should be devoted to the human facet of tracing, to explore traceability practices in organisational settings, and to develop traceability approaches that support agile and DevOps practices. Finally, it is recommended that researchers leverage blockchain technology as a suitable technical solution to ensure the trustworthiness of traceability information in interorganisational software projects.publishedVersio

    SkillVet: Automated Traceability Analysis of Amazon Alexa Skills

    Get PDF
    Third-party software, or skills, are essential components in Smart Personal Assistants (SPA). The number of skills has grown rapidly, dominated by a changing environment that has no clear business model. Skills can access personal information and this may pose a risk to users. However, there is little information about how this ecosystem works, let alone the tools that can facilitate its study. In this paper, we present the largest systematic measurement of the Amazon Alexa skill ecosystem to date. We study developers' practices in this ecosystem, including how they collect and justify the need for sensitive information, by designing a methodology to identify over-privileged skills with broken privacy policies. We collect 199,295 Alexa skills and uncover that around 43% of the skills (and 50% of the developers) that request these permissions follow bad privacy practices, including (partially) broken data permissions traceability. In order to perform this kind of analysis at scale, we present SkillVet that leverages machine learning and natural language processing techniques, and generates high-accuracy prediction sets. We report a number of concerning practices including how developers can bypass Alexa's permission system through account linking and conversational skills, and offer recommendations on how to improve transparency, privacy and security. Resulting from the responsible disclosure we have conducted,13% of the reported issues no longer pose a threat at submission time.Comment: 17pages, 8 figure

    Fundamental Approaches to Software Engineering

    Get PDF
    This open access book constitutes the proceedings of the 25th International Conference on Fundamental Approaches to Software Engineering, FASE 2022, which was held during April 4-5, 2022, in Munich, Germany, as part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2022. The 17 regular papers presented in this volume were carefully reviewed and selected from 64 submissions. The proceedings also contain 3 contributions from the Test-Comp Competition. The papers deal with the foundations on which software engineering is built, including topics like software engineering as an engineering discipline, requirements engineering, software architectures, software quality, model-driven development, software processes, software evolution, AI-based software engineering, and the specification, design, and implementation of particular classes of systems, such as (self-)adaptive, collaborative, AI, embedded, distributed, mobile, pervasive, cyber-physical, or service-oriented applications

    Automatic Transformation of Natural to Unified Modeling Language: A Systematic Review

    Get PDF
    Context: Processing Software Requirement Specifications (SRS) manually takes a much longer time for requirement analysts in software engineering. Researchers have been working on making an automatic approach to ease this task. Most of the existing approaches require some intervention from an analyst or are challenging to use. Some automatic and semi-automatic approaches were developed based on heuristic rules or machine learning algorithms. However, there are various constraints to the existing approaches of UML generation, such as restriction on ambiguity, length or structure, anaphora, incompleteness, atomicity of input text, requirements of domain ontology, etc. Objective: This study aims to better understand the effectiveness of existing systems and provide a conceptual framework with further improvement guidelines. Method: We performed a systematic literature review (SLR). We conducted our study selection into two phases and selected 70 papers. We conducted quantitative and qualitative analyses by manually extracting information, cross-checking, and validating our findings. Result: We described the existing approaches and revealed the issues observed in these works. We identified and clustered both the limitations and benefits of selected articles. Conclusion: This research upholds the necessity of a common dataset and evaluation framework to extend the research consistently. It also describes the significance of natural language processing obstacles researchers face. In addition, it creates a path forward for future research

    Fundamental Approaches to Software Engineering

    Get PDF
    This open access book constitutes the proceedings of the 25th International Conference on Fundamental Approaches to Software Engineering, FASE 2022, which was held during April 4-5, 2022, in Munich, Germany, as part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2022. The 17 regular papers presented in this volume were carefully reviewed and selected from 64 submissions. The proceedings also contain 3 contributions from the Test-Comp Competition. The papers deal with the foundations on which software engineering is built, including topics like software engineering as an engineering discipline, requirements engineering, software architectures, software quality, model-driven development, software processes, software evolution, AI-based software engineering, and the specification, design, and implementation of particular classes of systems, such as (self-)adaptive, collaborative, AI, embedded, distributed, mobile, pervasive, cyber-physical, or service-oriented applications
    • …
    corecore