18,633 research outputs found

    Lmit and shakedown analysis based on solid shell models

    Get PDF
    The paper treats the formulation of the shakedown problem and, as special case, of the limit analysis problem, using solid shell models and ES-FEM discratization technology. In this proposal the Discrete shear gap method is applied to alleviate the shear locking phenomenon

    Non-linear coupled CNN models for multiscale image analysis

    Get PDF
    A CNN model of partial differential equations (PDEs) for image multiscale analysis is proposed. The model is based on a polynomial representation of the diffusivity function and defines a paradigm of polynomial CNNs,for approximating a large class of nonlinear isotropic and/or anisotropic PDEs. The global dynamics of spacediscrete polynomial CNN models is analyzed and compared with the dynamic behavior of the corresponding space-continuous PDE models. It is shown that in the isotropic case the two models are not topologically equivalent: in particular discrete CNN models allow one to obtain the output image without stopping the image evolution after a given time (scale). This property represents an advantage with respect to continuous PDE models and could simplify some image preprocessing algorithm

    Multiscale Computations on Neural Networks: From the Individual Neuron Interactions to the Macroscopic-Level Analysis

    Full text link
    We show how the Equation-Free approach for multi-scale computations can be exploited to systematically study the dynamics of neural interactions on a random regular connected graph under a pairwise representation perspective. Using an individual-based microscopic simulator as a black box coarse-grained timestepper and with the aid of simulated annealing we compute the coarse-grained equilibrium bifurcation diagram and analyze the stability of the stationary states sidestepping the necessity of obtaining explicit closures at the macroscopic level. We also exploit the scheme to perform a rare-events analysis by estimating an effective Fokker-Planck describing the evolving probability density function of the corresponding coarse-grained observables

    Aspects of stochastic resonance in reaction-diffusion systems: The nonequilibrium-potential approach

    Full text link
    We analyze several aspects of the phenomenon of stochastic resonance in reaction-diffusion systems, exploiting the nonequilibrium potential's framework. The generalization of this formalism (sketched in the appendix) to extended systems is first carried out in the context of a simplified scalar model, for which stationary patterns can be found analytically. We first show how system-size stochastic resonance arises naturally in this framework, and then how the phenomenon of array-enhanced stochastic resonance can be further enhanced by letting the diffusion coefficient depend on the field. A yet less trivial generalization is exemplified by a stylized version of the FitzHugh-Nagumo system, a paradigm of the activator-inhibitor class. After discussing for this system the second aspect enumerated above, we derive from it -through an adiabatic-like elimination of the inhibitor field- an effective scalar model that includes a nonlocal contribution. Studying the role played by the range of the nonlocal kernel and its effect on stochastic resonance, we find an optimal range that maximizes the system's response.Comment: 16 pages, 15 figures, uses svjour.cls and svepj-spec.clo. Minireview to appear in The European Physical Journal Special Topics (issue in memory of Carlos P\'erez-Garc\'{\i}a, edited by H. Mancini

    Study of the 3D Coronal Magnetic Field of Active Region 11117 Around the Time of a Confined Flare Using a Data-Driven CESE--MHD Model

    Full text link
    We apply a data-driven MHD model to investigate the three-dimensional (3D) magnetic field of NOAA active region (AR) 11117 around the time of a C-class confined flare occurred on 2010 October 25. The MHD model, based on the spacetime conservation-element and solution-element (CESE) scheme, is designed to focus on the magnetic-field evolution and to consider a simplified solar atomsphere with finite plasma β\beta. Magnetic vector-field data derived from the observations at the photoshpere is inputted directly to constrain the model. Assuming that the dynamic evolution of the coronal magnetic field can be approximated by successive equilibria, we solve a time sequence of MHD equilibria basing on a set of vector magnetograms for AR 11117 taken by the Helioseismic and Magnetic Imager (HMI) on board the {\it Solar Dynamic Observatory (SDO)} around the time of flare. The model qualitatively reproduces the basic structures of the 3D magnetic field, as supported by the visual similarity between the field lines and the coronal loops observed by the Atmospheric Imaging Assembly (AIA), which shows that the coronal field can indeed be well characterized by the MHD equilibrium in most time. The magnetic configuration changes very limited during the studied time interval of two hours. A topological analysis reveals that the small flare is correlated with a bald patch (BP, where the magnetic field is tangent to the photoshpere), suggesting that the energy release of the flare can be understood by magnetic reconnection associated with the BP separatrices. The total magnetic flux and energy keep increasing slightly in spite of the flare, while the computed magnetic free energy drops during the flare with an amount of 1030\sim 10^{30} erg, which seems to be adequate to provide the energy budget of the minor C-class confined flare.Comment: 27 pages, 11 figures, Accepted by Ap

    Task-based adaptive multiresolution for time-space multi-scale reaction-diffusion systems on multi-core architectures

    Get PDF
    A new solver featuring time-space adaptation and error control has been recently introduced to tackle the numerical solution of stiff reaction-diffusion systems. Based on operator splitting, finite volume adaptive multiresolution and high order time integrators with specific stability properties for each operator, this strategy yields high computational efficiency for large multidimensional computations on standard architectures such as powerful workstations. However, the data structure of the original implementation, based on trees of pointers, provides limited opportunities for efficiency enhancements, while posing serious challenges in terms of parallel programming and load balancing. The present contribution proposes a new implementation of the whole set of numerical methods including Radau5 and ROCK4, relying on a fully different data structure together with the use of a specific library, TBB, for shared-memory, task-based parallelism with work-stealing. The performance of our implementation is assessed in a series of test-cases of increasing difficulty in two and three dimensions on multi-core and many-core architectures, demonstrating high scalability
    corecore