998 research outputs found

    Energy flow polynomials: A complete linear basis for jet substructure

    Get PDF
    We introduce the energy flow polynomials: a complete set of jet substructure observables which form a discrete linear basis for all infrared- and collinear-safe observables. Energy flow polynomials are multiparticle energy correlators with specific angular structures that are a direct consequence of infrared and collinear safety. We establish a powerful graph-theoretic representation of the energy flow polynomials which allows us to design efficient algorithms for their computation. Many common jet observables are exact linear combinations of energy flow polynomials, and we demonstrate the linear spanning nature of the energy flow basis by performing regression for several common jet observables. Using linear classification with energy flow polynomials, we achieve excellent performance on three representative jet tagging problems: quark/gluon discrimination, boosted W tagging, and boosted top tagging. The energy flow basis provides a systematic framework for complete investigations of jet substructure using linear methods.Comment: 41+15 pages, 13 figures, 5 tables; v2: updated to match JHEP versio

    Learning Hierarchical Review Graph Representations for Recommendation

    Full text link
    The user review data have been demonstrated to be effective in solving different recommendation problems. Previous review-based recommendation methods usually employ sophisticated compositional models, such as Recurrent Neural Networks (RNN) and Convolutional Neural Networks (CNN), to learn semantic representations from the review data for recommendation. However, these methods mainly capture the local dependency between neighbouring words in a word window, and they treat each review equally. Therefore, they may not be effective in capturing the global dependency between words, and tend to be easily biased by noise review information. In this paper, we propose a novel review-based recommendation model, named Review Graph Neural Network (RGNN). Specifically, RGNN builds a specific review graph for each individual user/item, which provides a global view about the user/item properties to help weaken the biases caused by noise review information. A type-aware graph attention mechanism is developed to learn semantic embeddings of words. Moreover, a personalized graph pooling operator is proposed to learn hierarchical representations of the review graph to form the semantic representation for each user/item. We compared RGNN with state-of-the-art review-based recommendation approaches on two real-world datasets. The experimental results indicate that RGNN consistently outperforms baseline methods, in terms of Mean Square Error (MSE)

    Models and Benchmarks for Representation Learning of Partially Observed Subgraphs

    Full text link
    Subgraphs are rich substructures in graphs, and their nodes and edges can be partially observed in real-world tasks. Under partial observation, existing node- or subgraph-level message-passing produces suboptimal representations. In this paper, we formulate a novel task of learning representations of partially observed subgraphs. To solve this problem, we propose Partial Subgraph InfoMax (PSI) framework and generalize existing InfoMax models, including DGI, InfoGraph, MVGRL, and GraphCL, into our framework. These models maximize the mutual information between the partial subgraph's summary and various substructures from nodes to full subgraphs. In addition, we suggest a novel two-stage model with kk-hop PSI, which reconstructs the representation of the full subgraph and improves its expressiveness from different local-global structures. Under training and evaluation protocols designed for this problem, we conduct experiments on three real-world datasets and demonstrate that PSI models outperform baselines.Comment: CIKM 2022 Short Paper (Camera-ready + Appendix

    Kernel-based Substructure Exploration for Next POI Recommendation

    Full text link
    Point-of-Interest (POI) recommendation, which benefits from the proliferation of GPS-enabled devices and location-based social networks (LBSNs), plays an increasingly important role in recommender systems. It aims to provide users with the convenience to discover their interested places to visit based on previous visits and current status. Most existing methods usually merely leverage recurrent neural networks (RNNs) to explore sequential influences for recommendation. Despite the effectiveness, these methods not only neglect topological geographical influences among POIs, but also fail to model high-order sequential substructures. To tackle the above issues, we propose a Kernel-Based Graph Neural Network (KBGNN) for next POI recommendation, which combines the characteristics of both geographical and sequential influences in a collaborative way. KBGNN consists of a geographical module and a sequential module. On the one hand, we construct a geographical graph and leverage a message passing neural network to capture the topological geographical influences. On the other hand, we explore high-order sequential substructures in the user-aware sequential graph using a graph kernel neural network to capture user preferences. Finally, a consistency learning framework is introduced to jointly incorporate geographical and sequential information extracted from two separate graphs. In this way, the two modules effectively exchange knowledge to mutually enhance each other. Extensive experiments conducted on two real-world LBSN datasets demonstrate the superior performance of our proposed method over the state-of-the-arts. Our codes are available at https://github.com/Fang6ang/KBGNN.Comment: Accepted by the IEEE International Conference on Data Mining (ICDM) 202

    Hard Sample Aware Network for Contrastive Deep Graph Clustering

    Full text link
    Contrastive deep graph clustering, which aims to divide nodes into disjoint groups via contrastive mechanisms, is a challenging research spot. Among the recent works, hard sample mining-based algorithms have achieved great attention for their promising performance. However, we find that the existing hard sample mining methods have two problems as follows. 1) In the hardness measurement, the important structural information is overlooked for similarity calculation, degrading the representativeness of the selected hard negative samples. 2) Previous works merely focus on the hard negative sample pairs while neglecting the hard positive sample pairs. Nevertheless, samples within the same cluster but with low similarity should also be carefully learned. To solve the problems, we propose a novel contrastive deep graph clustering method dubbed Hard Sample Aware Network (HSAN) by introducing a comprehensive similarity measure criterion and a general dynamic sample weighing strategy. Concretely, in our algorithm, the similarities between samples are calculated by considering both the attribute embeddings and the structure embeddings, better revealing sample relationships and assisting hardness measurement. Moreover, under the guidance of the carefully collected high-confidence clustering information, our proposed weight modulating function will first recognize the positive and negative samples and then dynamically up-weight the hard sample pairs while down-weighting the easy ones. In this way, our method can mine not only the hard negative samples but also the hard positive sample, thus improving the discriminative capability of the samples further. Extensive experiments and analyses demonstrate the superiority and effectiveness of our proposed method.Comment: 9 pages, 6 figure

    A Survey on Explainability of Graph Neural Networks

    Full text link
    Graph neural networks (GNNs) are powerful graph-based deep-learning models that have gained significant attention and demonstrated remarkable performance in various domains, including natural language processing, drug discovery, and recommendation systems. However, combining feature information and combinatorial graph structures has led to complex non-linear GNN models. Consequently, this has increased the challenges of understanding the workings of GNNs and the underlying reasons behind their predictions. To address this, numerous explainability methods have been proposed to shed light on the inner mechanism of the GNNs. Explainable GNNs improve their security and enhance trust in their recommendations. This survey aims to provide a comprehensive overview of the existing explainability techniques for GNNs. We create a novel taxonomy and hierarchy to categorize these methods based on their objective and methodology. We also discuss the strengths, limitations, and application scenarios of each category. Furthermore, we highlight the key evaluation metrics and datasets commonly used to assess the explainability of GNNs. This survey aims to assist researchers and practitioners in understanding the existing landscape of explainability methods, identifying gaps, and fostering further advancements in interpretable graph-based machine learning.Comment: submitted to Bulletin of the IEEE Computer Society Technical Committee on Data Engineerin

    Reinforced Imitative Graph Learning for Mobile User Profiling

    Get PDF
    Mobile user profiling refers to the efforts of extracting users’ characteristics from mobile activities. In order to capture the dynamic varying of user characteristics for generating effective user profiling, we propose an imitation-based mobile user profiling framework. Considering the objective of teaching an autonomous agent to imitate user mobility based on the user’s profile, the user profile is the most accurate when the agent can perfectly mimic the user behavior patterns. The profiling framework is formulated into a reinforcement learning task, where an agent is a next-visit planner, an action is a POI that a user will visit next, and the state of the environment is a fused representation of a user and spatial entities. An event in which a user visits a POI will construct a new state, which helps the agent predict users’ mobility more accurately. In the framework, we introduce a spatial Knowledge Graph (KG) to characterize the semantics of user visits over connected spatial entities. Additionally, we develop a mutual-updating strategy to quantify the state that evolves over time. Along these lines, we develop a reinforcement imitative graph learning framework for mobile user profiling. Finally, we conduct extensive experiments to demonstrate the superiority of our approach
    • …
    corecore