477 research outputs found

    Security and Privacy Issues in Wireless Mesh Networks: A Survey

    Full text link
    This book chapter identifies various security threats in wireless mesh network (WMN). Keeping in mind the critical requirement of security and user privacy in WMNs, this chapter provides a comprehensive overview of various possible attacks on different layers of the communication protocol stack for WMNs and their corresponding defense mechanisms. First, it identifies the security vulnerabilities in the physical, link, network, transport, application layers. Furthermore, various possible attacks on the key management protocols, user authentication and access control protocols, and user privacy preservation protocols are presented. After enumerating various possible attacks, the chapter provides a detailed discussion on various existing security mechanisms and protocols to defend against and wherever possible prevent the possible attacks. Comparative analyses are also presented on the security schemes with regards to the cryptographic schemes used, key management strategies deployed, use of any trusted third party, computation and communication overhead involved etc. The chapter then presents a brief discussion on various trust management approaches for WMNs since trust and reputation-based schemes are increasingly becoming popular for enforcing security in wireless networks. A number of open problems in security and privacy issues for WMNs are subsequently discussed before the chapter is finally concluded.Comment: 62 pages, 12 figures, 6 tables. This chapter is an extension of the author's previous submission in arXiv submission: arXiv:1102.1226. There are some text overlaps with the previous submissio

    Mobile Ad-Hoc Networks

    Get PDF
    Being infrastructure-less and without central administration control, wireless ad-hoc networking is playing a more and more important role in extending the coverage of traditional wireless infrastructure (cellular networks, wireless LAN, etc). This book includes state-of the-art techniques and solutions for wireless ad-hoc networks. It focuses on the following topics in ad-hoc networks: vehicular ad-hoc networks, security and caching, TCP in ad-hoc networks and emerging applications. It is targeted to provide network engineers and researchers with design guidelines for large scale wireless ad hoc networks

    Dynamic trust negotiation for decentralised e-health collaborations

    Get PDF
    In the Internet-age, the geographical boundaries that have previously impinged upon inter-organisational collaborations have become decreasingly important. Of more importance for such collaborations is the notion and subsequent nature of security and trust - this is especially so in open collaborative environments like the Grid where resources can be both made available, subsequently accessed and used by remote users from a multitude of institutions with a variety of different privileges spanning across the collaboration. In this context, the ability to dynamically negotiate and subsequently enforce security policies driven by various levels of inter-organisational trust is essential. Numerous access control solutions exist today to address aspects of inter-organisational security. These include the use of centralised access control lists where all collaborating partners negotiate and agree on privileges required to access shared resources. Other solutions involve delegating aspects of access right management to trusted remote individuals in assigning privileges to their (remote) users. These solutions typically entail negotiations and delegations which are constrained by organisations, people and the static rules they impose. Such constraints often result in a lack of flexibility in what has been agreed; difficulties in reaching agreement, or once established, in subsequently maintaining these agreements. Furthermore, these solutions often reduce the autonomous capacity of collaborating organisations because of the need to satisfy collaborating partners demands. This can result in increased security risks or reducing the granularity of security policies. Underpinning this is the issue of trust. Specifically trust realisation between organisations, between individuals, and/or between entities or systems that are present in multi-domain authorities. Trust negotiation is one approach that allows and supports trust realisation. The thesis introduces a novel model called dynamic trust negotiation (DTN) that supports n-tier negotiation hops for trust realisation in multi-domain collaborative environments with specific focus on e-Health environments. DTN describes how trust pathways can be discovered and subsequently how remote security credentials can be mapped to local security credentials through trust contracts, thereby bridging the gap that makes decentralised security policies difficult to define and enforce. Furthermore, DTN shows how n-tier negotiation hops can limit the disclosure of access control policies and how semantic issues that exist with security attributes in decentralised environments can be reduced. The thesis presents the results from the application of DTN to various clinical trials and the implementation of DTN to Virtual Organisation for Trials of Epidemiological Studies (VOTES). The thesis concludes that DTN can address the issue of realising and establishing trust between systems or agents within the e-Health domain, such as the clinical trials domain

    Privacy in characterizing and recruiting patients for IoHT-aided digital clinical trials

    Get PDF
    Nowadays there is a tremendous amount of smart and connected devices that produce data. The so-called IoT is so pervasive that its devices (in particular the ones that we take with us during all the day - wearables, smartphones...) often provide some insights on our lives to third parties. People habitually exchange some of their private data in order to obtain services, discounts and advantages. Sharing personal data is commonly accepted in contexts like social networks but individuals suddenly become more than concerned if a third party is interested in accessing personal health data. The healthcare systems worldwide, however, begun to take advantage of the data produced by eHealth solutions. It is clear that while on one hand the technology proved to be a great ally in the modern medicine and can lead to notable benefits, on the other hand these processes pose serious threats to our privacy. The process of testing, validating and putting on the market a new drug or medical treatment is called clinical trial. These trials are deeply impacted by the technological advancements and greatly benefit from the use of eHealth solutions. The clinical research institutes are the entities in charge of leading the trials and need to access as much health data of the patients as possible. However, at any phase of a clinical trial, the personal information of the participants should be preserved and maintained private as long as possible. During this thesis, we will introduce an architecture that protects the privacy of personal data during the first phases of digital clinical trials (namely the characterization phase and the recruiting phase), allowing potential participants to freely join trials without disclosing their personal health information without a proper reward and/or prior agreement. We will illustrate what is the trusted environment that is the most used approach in eHealth and, later, we will dig into the untrusted environment where the concept of privacy is more challenging to protect while maintaining usability of data. Our architecture maintains the individuals in full control over the flow of their personal health data. Moreover, the architecture allows the clinical research institutes to characterize the population of potentiant users without direct access to their personal data. We validated our architecture with a proof of concept that includes all the involved entities from the low level hardware up to the end application. We designed and realized the hardware capable of sensing, processing and transmitting personal health data in a privacy preserving fashion that requires little to none maintenance

    Mobile Ad-Hoc Networks

    Get PDF
    Being infrastructure-less and without central administration control, wireless ad-hoc networking is playing a more and more important role in extending the coverage of traditional wireless infrastructure (cellular networks, wireless LAN, etc). This book includes state-of-the-art techniques and solutions for wireless ad-hoc networks. It focuses on the following topics in ad-hoc networks: quality-of-service and video communication, routing protocol and cross-layer design. A few interesting problems about security and delay-tolerant networks are also discussed. This book is targeted to provide network engineers and researchers with design guidelines for large scale wireless ad hoc networks

    Certificate status information distribution and validation in vehicular networks

    Get PDF
    Vehicular ad hoc networks (VANETs) are emerging as an functional technology for providing a wide range of applications to vehicles and passengers. Ensuring secure functioning is one of the prerequisites for deploying reliable VANETs. The basic solution envisioned to achieve these requirements is to use digital certificates linked to a user by a trusted third party. These certificates can then be used to sign information. Most of the existing solutions manage these certificates by means of a central Certification Authority (CA). According to IEEE 1609.2 standard, vehicular networks will rely on the public key infrastructure (PKI). In PKI, a CA issues an authentic digital certificate for each node in the network. Therefore, an efficient certificate management is crucial for the robust and reliable operation of any PKI. A critical part of any certificate-management scheme is the revocation of certificates. The distribution of certificate status information process, as well as the revocation process itself, is an open research problem for VANETs.In this thesis, firstly we analyze the revocation process itself and develop an accurate and rigorous model for certificate revocation. One of the key findings of our analysis is that the certificate revocation process is statistically self-similar. As none of the currently common formal models for revocation is able to capture the self-similar nature of real revocation data, we develop an ARFIMA model that recreates this pattern. We show that traditional mechanisms that aim to scale could benefit from this model to improve their updating strategies.Secondly, we analyze how to deploy a certificate status checking service for mobile networks and we propose a new criterion based on a risk metric to evaluate cached status data. With this metric, the PKI is able to code information about the revocation process in the standard certificate revocation lists. Thus, users can evaluate a risk function in order to estimate whether a certificate has been revoked while there is no connection to a status checking server. Moreover, we also propose a systematic methodology to build a fuzzy system that assists users in the decision making process related to certificate status checking.Thirdly, we propose two novel mechanisms for distributing and validating certificate status information (CSI) in VANET. This first mechanism is a collaborative certificate status checking mechanism based on the use based on an extended-CRL. The main advantage of this extended-CRL is that the road-side units and repository vehicles can build an efficient structure based on an authenticated hash tree to respond to status checking requests inside the VANET, saving time and bandwidth. The second mechanism aims to optimize the trade- off between the bandwidth necessary to download the CSI and the freshness of the CSI. This mechanism is based on the use of a hybrid delta-CRL scheme and Merkle hash trees, so that the risk of operating with unknown revoked certificates remains below a threshold during the validity interval of the base-CRL, and CAs have the ability to manage this risk by setting the size of the delta-CRLs. Finally, we also analyze the impact of the revocation service in the certificate prices. We model the behavior of the oligopoly of risk-averse certificate providers that issue digital certificates to clients facing iden- tical independent risks. We found the equilibrium in the Bertrand game. In this equilibrium, we proof that certificate providers that offer better revocation information are able to impose higher prices to their certificates without sacrificing market share in favor of the other oligarchs.Las redes vehiculares ad hoc (VANETs) se están convirtiendo en una tecnología funcional para proporcionar una amplia gama de aplicaciones para vehículos y pasajeros. Garantizar un funcionamiento seguro es uno de los requisitos para el despliegue de las VANETs. Sin seguridad, los usuarios podrían ser potencialmente vulnerables a la mala conducta de los servicios prestados por la VANET. La solución básica prevista para lograr estos requisitos es el uso de certificados digitales gestionados a través de una autoridad de certificación (CA). De acuerdo con la norma IEEE 1609.2, las redes vehiculares dependerán de la infraestructura de clave pública (PKI). Sin embargo, el proceso de distribución del estado de los certificados, así como el propio proceso de revocación, es un problema abierto para VANETs.En esta tesis, en primer lugar se analiza el proceso de revocación y se desarrolla un modelo preciso y riguroso que modela este proceso conluyendo que el proceso de revocación de certificados es estadísticamente auto-similar. Como ninguno de los modelos formales actuales para la revocación es capaz de capturar la naturaleza auto-similar de los datos de revocación, desarrollamos un modelo ARFIMA que recrea este patrón. Mostramos que ignorar la auto-similitud del proceso de revocación lleva a estrategias de emisión de datos de revocación ineficientes. El modelo propuesto permite generar trazas de revocación sintéticas con las cuales los esquemas de revocación actuales pueden ser mejorados mediante la definición de políticas de emisión de datos de revocación más precisas. En segundo lugar, se analiza la forma de implementar un mecanismo de emisión de datos de estado de los certificados para redes móviles y se propone un nuevo criterio basado en una medida del riesgo para evaluar los datos de revocación almacenados en la caché. Con esta medida, la PKI es capaz de codificar la información sobre el proceso de revocación en las listas de revocación. Así, los usuarios pueden estimar en función del riesgo si un certificado se ha revocado mientras no hay conexión a un servidor de control de estado. Por otra parte, también se propone una metodología sistemática para construir un sistema difuso que ayuda a los usuarios en el proceso de toma de decisiones relacionado con la comprobación de estado de certificados.En tercer lugar, se proponen dos nuevos mecanismos para la distribución y validación de datos de estado de certificados en VANETs. El primer mecanismo está basado en el uso en una extensión de las listas estandares de revocación. La principal ventaja de esta extensión es que las unidades al borde de la carretera y los vehículos repositorio pueden construir una estructura eficiente sobre la base de un árbol de hash autenticado para responder a las peticiones de estado de certificados. El segundo mecanismo tiene como objetivo optimizar el equilibrio entre el ancho de banda necesario para descargar los datos de revocación y la frescura de los mismos. Este mecanismo se basa en el uso de un esquema híbrido de árboles de Merkle y delta-CRLs, de modo que el riesgo de operar con certificados revocados desconocidos permanece por debajo de un umbral durante el intervalo de validez de la CRL base, y la CA tiene la capacidad de gestionar este riesgo mediante el ajuste del tamaño de las delta-CRL. Para cada uno de estos mecanismos, llevamos a cabo el análisis de la seguridad y la evaluación del desempeño para demostrar la seguridad y eficiencia de las acciones que se emprenden

    Providing incentive to peer-to-peer applications

    Get PDF
    Cooperative peer-to-peer applications are designed to share the resources of participating computers for the common good of ail users. However, users do not necessarily have an incentive to donate resources to the system if they can use the system's resources for free. As commonly observed in deployed applications, this situation adversely affects the applications' performance and sometimes even their availability and usability. While traditional resource management is handled by a centralized enforcement entity, adopting similar solution raises new concerns for distributed peer-to-peer systems. This dissertation proposes to solve the incentive problem in peer-to-peer applications by designing fair sharing policies and enforcing these policies in a distributed manner. The feasibility and practicability of this approach is demonstrated through numerous applications, namely archival storage systems, streaming systems, content distribution systems, and anonymous communication systems
    corecore