1,163 research outputs found

    Exploiting method semantics in client cache consistency protocols for object-oriented databases

    Get PDF
    PhD ThesisData-shipping systems are commonly used in client-server object-oriented databases. This is in- tended to utilise clients' resources and improve scalability by allowing clients to run transactions locally after fetching the required database items from the database server. A consequence of this is that a database item can be cached at more than one client. This therefore raises issues regarding client cache consistency and concurrency control. A number of client cache consistency protocols have been studied, and some approaches to concurrency control for object-oriented datahases have been proposed. Existing client consistency protocols, however, do not consider method semantics in concurrency control. This study proposes a client cache consistency protocol where method se- mantic can be exploited in concurrency control. It identifies issues regarding the use of method semantics for the protocol and investigates the performance using simulation. The performance re- sults show that this can result in performance gains when compared to existing protocols. The study also shows the potential benefits of asynchronous version of the protoco

    A Taxonomy of Data Grids for Distributed Data Sharing, Management and Processing

    Full text link
    Data Grids have been adopted as the platform for scientific communities that need to share, access, transport, process and manage large data collections distributed worldwide. They combine high-end computing technologies with high-performance networking and wide-area storage management techniques. In this paper, we discuss the key concepts behind Data Grids and compare them with other data sharing and distribution paradigms such as content delivery networks, peer-to-peer networks and distributed databases. We then provide comprehensive taxonomies that cover various aspects of architecture, data transportation, data replication and resource allocation and scheduling. Finally, we map the proposed taxonomy to various Data Grid systems not only to validate the taxonomy but also to identify areas for future exploration. Through this taxonomy, we aim to categorise existing systems to better understand their goals and their methodology. This would help evaluate their applicability for solving similar problems. This taxonomy also provides a "gap analysis" of this area through which researchers can potentially identify new issues for investigation. Finally, we hope that the proposed taxonomy and mapping also helps to provide an easy way for new practitioners to understand this complex area of research.Comment: 46 pages, 16 figures, Technical Repor

    High Performance Computing using Infiniband-based clusters

    Get PDF
    L'abstract è presente nell'allegato / the abstract is in the attachmen

    Migrating relational data to an OODB: strategies and lessions from a molecular biology experience

    Get PDF
    Journal ArticleThe growing maturity of OODB technology is causing many enterprises to consider migrating relational databases to OODBs. While data remapping is relatively straightforward, greater challenges lie in economically and non-invasively adapting legacy application software. We report on a genetics laboratory database migration experiment, which was facilitated by both organization of the relational data in object-like form and a C++ framework designed to insulate application code from relational artifacts. To our surprise, the framework failed to encapsulate three subtle aspects of the relational implementation, thereby "contaminating" application code. We describe the underlying issues, and offer cautionary guidance to future migrators

    Using khazana to support distributed application development

    Get PDF
    technical reportOne of the most important services required by most distributed applications is some form of shared data management, e.g., a directory service manages shared directory entries while groupware manages shared documents. Each such application currently must implement its own data management mechanisms, because existing runtime systems are not flexible enough to support all distributed applications efficiently. For example, groupware can be efficiently supported by a distributed object system, while a distributed database would prefer a more low-level storage abstraction. The goal of Khazana is to provide programmer's with configurable components that support the data management services required by a wide variety of distributed applications, including: consistent caching, automated replication and migration of data, persistence, access control, and fault tolerance. It does so via a carefully designed set of interfaces that supports a hierarchy of data abstractions, ranging from flat data to C++/Java objects, and that give programmers a great of control over how their data is managed. To demonstrate the effectiveness of our design, we report on our experience porting three applications to Khazana: a distributed file system, a distributed directory service, and a shared whiteboard

    Consistency and Performance of Concurrent Interactive Database Applications

    Get PDF
    In many modern database applications, there is an emerging need for interactive environments where users directly manipulate the contents of the database. Graphical user interfaces (GUIs) display images of the database which must reflect a consistent up-to-date state of the data with minimum perceivable delay to the user. Moreover, the possibility of several applications concurrently displaying different views of the same database increases the overall system complexity. In this paper, we show how design, performance and concurrency issues can be addressed by adapting existing database techniques. We propose the use of suitable display schemas whose instances compose active views of the database, an extended client caching scheme which is expected to yield significant performance benefits and a locking mechanism that maintains consistency between the GUIs and the database. <BR

    Models of higher-order, type-safe, distributed computation over autonomous persistent object stores

    Get PDF
    A remote procedure call (RPC) mechanism permits the calling of procedures in another address space. RPC is a simple but highly effective mechanism for interprocess communication and enjoys nowadays a great popularity as a tool for building distributed applications. This popularity is partly a result of their overall simplicity but also partly a consequence of more than 20 years of research in transpaxent distribution that have failed to deliver systems that meet the expectations of real-world application programmers. During the same 20 years, persistent systems have proved their suitability for building complex database applications by seamlessly integrating features traditionally found in database management systems into the programming language itself. Some research. effort has been invested on distributed persistent systems, but the outcomes commonly suffer from the same problems found with transparent distribution. In this thesis I claim that a higher-order persistent RPC is useful for building distributed persistent applications. The proposed mechanism is: realistic in the sense that it uses current technology and tolerates partial failures; understandable by application programmers; and general to support the development of many classes of distributed persistent applications. In order to demonstrate the validity of these claims, I propose and have implemented three models for distributed higher-order computation over autonomous persistent stores. Each model has successively exposed new problems which have then been overcome by the next model. Together, the three models provide a general yet simple higher-order persistent RPC that is able to operate in realistic environments with partial failures. The real strength of this thesis is the demonstration of realism and simplicity. A higherorder persistent RPC was not only implemented but also used by programmers without experience of programming distributed applications. Furthermore, a distributed persistent application has been built using these models which would not have been feasible with a traditional (non-persistent) programming language
    • …
    corecore