985 research outputs found

    Improving the scalability of parallel N-body applications with an event driven constraint based execution model

    Full text link
    The scalability and efficiency of graph applications are significantly constrained by conventional systems and their supporting programming models. Technology trends like multicore, manycore, and heterogeneous system architectures are introducing further challenges and possibilities for emerging application domains such as graph applications. This paper explores the space of effective parallel execution of ephemeral graphs that are dynamically generated using the Barnes-Hut algorithm to exemplify dynamic workloads. The workloads are expressed using the semantics of an Exascale computing execution model called ParalleX. For comparison, results using conventional execution model semantics are also presented. We find improved load balancing during runtime and automatic parallelism discovery improving efficiency using the advanced semantics for Exascale computing.Comment: 11 figure

    HitFlow: A Dataflow Programming Model for Hybrid Distributed- and Shared-Memory Systems

    Get PDF
    Producción CientíficaDataflow programming consists in developing a program by describing its sequential stages and the interactions between them. The runtime systems supporting this kind of programming are responsible for exploiting the parallelism by concurrently executing the different stages as soon as their dependencies are met. In this paper we introduce a new parallel programming model and framework based on the dataflow paradigm. It presents a new combination of features that allows to easily map programs to shared or distributed memory, exploiting data locality and affinity to obtain the same performance than optimized coarse-grain MPI programs. These features include: It is a unique one-tier model that supports hybrid shared- and distributed-memory systems with the same abstractions; it can express activities arbitrarily linked, including non-nested cycles; it uses internally a distributed work-stealing mechanism to allow Multiple-Producer/Multiple-Consumer configurations; and it has a runtime mechanism for the reconfiguration of the dependences and communication channels which also allows the creation of task-to-task data affinities. We present an evaluation using examples of different classes of applications. Experimental results show that programs generated using this framework deliver good performance in hybrid distributed- and shared-memory environments, with a similar development effort as other dataflow programming models oriented to shared-memory.2019-01-01MICINN (Spain) and ERDF program of the European Union: HomProg-HetSys project (TIN2014-58876- P), PCAS project (TIN2017-88614-R), CAPAP-H6 (TIN2016-81840-REDT), and COST Program Action IC1305: Network for Sustainable Ultrascale Com- puting (NESUS). By Junta de Castilla y Le on, project PROPHET (VA082P17). And by the computing facilities of Extremadura Research Centre for Advanced Technologies (CETA- CIEMAT), funded by the European Regional Develop- ment Fund (ERDF). CETA-CIEMAT belongs to CIEMAT and the Govern- ment of Spain

    Extending the Nested Parallel Model to the Nested Dataflow Model with Provably Efficient Schedulers

    Full text link
    The nested parallel (a.k.a. fork-join) model is widely used for writing parallel programs. However, the two composition constructs, i.e. "\parallel" (parallel) and ";;" (serial), are insufficient in expressing "partial dependencies" or "partial parallelism" in a program. We propose a new dataflow composition construct "\leadsto" to express partial dependencies in algorithms in a processor- and cache-oblivious way, thus extending the Nested Parallel (NP) model to the \emph{Nested Dataflow} (ND) model. We redesign several divide-and-conquer algorithms ranging from dense linear algebra to dynamic-programming in the ND model and prove that they all have optimal span while retaining optimal cache complexity. We propose the design of runtime schedulers that map ND programs to multicore processors with multiple levels of possibly shared caches (i.e, Parallel Memory Hierarchies) and provide theoretical guarantees on their ability to preserve locality and load balance. For this, we adapt space-bounded (SB) schedulers for the ND model. We show that our algorithms have increased "parallelizability" in the ND model, and that SB schedulers can use the extra parallelizability to achieve asymptotically optimal bounds on cache misses and running time on a greater number of processors than in the NP model. The running time for the algorithms in this paper is O(i=0h1Q(t;σMi)Cip)O\left(\frac{\sum_{i=0}^{h-1} Q^{*}({\mathsf t};\sigma\cdot M_i)\cdot C_i}{p}\right), where QQ^{*} is the cache complexity of task t{\mathsf t}, CiC_i is the cost of cache miss at level-ii cache which is of size MiM_i, σ(0,1)\sigma\in(0,1) is a constant, and pp is the number of processors in an hh-level cache hierarchy

    Beyond Dataflow

    Get PDF
    This paper presents some recent advanced dataflow architectures. While the dataflow concept offers the potential of high performance, the performance of an actual dataflow implementation can be restricted by a limited number of functional units, limited memory bandwidth, and the need to associatively match pending operations with available functional units. Since the early 1970s, there have been significant developments in both fundamental research and practical realizations of dataflow models of computation. In particular, there has been active research and development in multithreaded architectures that evolved from the dataflow model. Also some other techniques for combining control-flow and dataflow emerged, such as coarse-grain dataflow, dataflow with complex machine operations, RISC dataflow, and micro dataflow. These developments have also had certain impact on the conception of highperformance superscalar processors in the “post-RISC” era
    corecore