18,877 research outputs found

    Exploiting Linked Open Data to Uncover Entity Types

    Get PDF
    Extracting structured information from text plays a crucial role in automatic knowledge acquisition and is at the core of any knowledge representation and reasoning system. Traditional methods rely on hand-crafted rules and are restricted by the performance of various linguistic pre-processing tools. More recent approaches rely on supervised learning of relations trained on labelled examples, which can be manually created or sometimes automatically generated (referred as distant supervision). We propose a supervised method for entity typing and alignment. We argue that a rich feature space can improve extraction accuracy and we propose to exploit Linked Open Data (LOD) for feature enrichment. Our approach is tested on task-2 of the Open Knowledge Extraction challenge, including automatic entity typing and alignment. Our approach demonstrate that by combining evidences derived from LOD (e.g. DBpedia) and conventional lexical resources (e.g. WordNet) (i) improves the accuracy of the supervised induction method and (ii) enables easy matching with the Dolce+DnS Ultra Lite ontology classes

    Combining a co-occurrence-based and a semantic measure for entity linking

    Get PDF
    One key feature of the Semantic Web lies in the ability to link related Web resources. However, while relations within particular datasets are often well-defined, links between disparate datasets and corpora of Web resources are rare. The increasingly widespread use of cross-domain reference datasets, such as Freebase and DBpedia for annotating and enriching datasets as well as documents, opens up opportunities to exploit their inherent semantic relationships to align disparate Web resources. In this paper, we present a combined approach to uncover relationships between disparate entities which exploits (a) graph analysis of reference datasets together with (b) entity co-occurrence on the Web with the help of search engines. In (a), we introduce a novel approach adopted and applied from social network theory to measure the connectivity between given entities in reference datasets. The connectivity measures are used to identify connected Web resources. Finally, we present a thorough evaluation of our approach using a publicly available dataset and introduce a comparison with established measures in the field. The final publication is available at Springer via http://dx.doi.org/10.1007/978-3-642-38288-8_37

    Explainable Reasoning over Knowledge Graphs for Recommendation

    Full text link
    Incorporating knowledge graph into recommender systems has attracted increasing attention in recent years. By exploring the interlinks within a knowledge graph, the connectivity between users and items can be discovered as paths, which provide rich and complementary information to user-item interactions. Such connectivity not only reveals the semantics of entities and relations, but also helps to comprehend a user's interest. However, existing efforts have not fully explored this connectivity to infer user preferences, especially in terms of modeling the sequential dependencies within and holistic semantics of a path. In this paper, we contribute a new model named Knowledge-aware Path Recurrent Network (KPRN) to exploit knowledge graph for recommendation. KPRN can generate path representations by composing the semantics of both entities and relations. By leveraging the sequential dependencies within a path, we allow effective reasoning on paths to infer the underlying rationale of a user-item interaction. Furthermore, we design a new weighted pooling operation to discriminate the strengths of different paths in connecting a user with an item, endowing our model with a certain level of explainability. We conduct extensive experiments on two datasets about movie and music, demonstrating significant improvements over state-of-the-art solutions Collaborative Knowledge Base Embedding and Neural Factorization Machine.Comment: 8 pages, 5 figures, AAAI-201

    RecRules: Recommending IF-THEN Rules for End-User Development

    Get PDF
    Nowadays, end users can personalize their smart devices and web applications by defining or reusing IF-THEN rules through dedicated End-User Development (EUD) tools. Despite apparent simplicity, such tools present their own set of issues. The emerging and increasing complexity of the Internet of Things, for example, is barely taken into account, and the number of possible combinations between triggers and actions of different smart devices and web applications is continuously growing. Such a large design space makes end-user personalization a complex task for non-programmers, and motivates the need of assisting users in easily discovering and managing rules and functionality, e.g., through recommendation techniques. In this paper, we tackle the emerging problem of recommending IF-THEN rules to end users by presenting RecRules, a hybrid and semantic recommendation system. Through a mixed content and collaborative approach, the goal of RecRules is to recommend by functionality: it suggests rules based on their final purposes, thus overcoming details like manufacturers and brands. The algorithm uses a semantic reasoning process to enrich rules with semantic information, with the aim of uncovering hidden connections between rules in terms of shared functionality. Then, it builds a collaborative semantic graph, and it exploits different types of path-based features to train a learning to rank algorithm and compute top-N recommendations. We evaluate RecRules through different experiments on real user data extracted from IFTTT, one of the most popular EUD tool. Results are promising: they show the effectiveness of our approach with respect to other state-of-the-art algorithms, and open the way for a new class of recommender systems for EUD that take into account the actual functionality needed by end users

    RDF-TR: Exploiting structural redundancies to boost RDF compression

    Get PDF
    The number and volume of semantic data have grown impressively over the last decade, promoting compression as an essential tool for RDF preservation, sharing and management. In contrast to universal compressors, RDF compression techniques are able to detect and exploit specific forms of redundancy in RDF data. Thus, state-of-the-art RDF compressors excel at exploiting syntactic and semantic redundancies, i.e., repetitions in the serialization format and information that can be inferred implicitly. However, little attention has been paid to the existence of structural patterns within the RDF dataset; i.e. structural redundancy. In this paper, we analyze structural regularities in real-world datasets, and show three schema-based sources of redundancies that underpin the schema-relaxed nature of RDF. Then, we propose RDF-Tr (RDF Triples Reorganizer), a preprocessing technique that discovers and removes this kind of redundancy before the RDF dataset is effectively compressed. In particular, RDF-Tr groups subjects that are described by the same predicates, and locally re-codes the objects related to these predicates. Finally, we integrate RDF-Tr with two RDF compressors, HDT and k2-triples. Our experiments show that using RDF-Tr with these compressors improves by up to 2.3 times their original effectiveness, outperforming the most prominent state-of-the-art techniques

    Computational and human-based methods for knowledge discovery over knowledge graphs

    Get PDF
    The modern world has evolved, accompanied by the huge exploitation of data and information. Daily, increasing volumes of data from various sources and formats are stored, resulting in a challenging strategy to manage and integrate them to discover new knowledge. The appropriate use of data in various sectors of society, such as education, healthcare, e-commerce, and industry, provides advantages for decision support in these areas. However, knowledge discovery becomes challenging since data may come from heterogeneous sources with important information hidden. Thus, new approaches that adapt to the new challenges of knowledge discovery in such heterogeneous data environments are required. The semantic web and knowledge graphs (KGs) are becoming increasingly relevant on the road to knowledge discovery. This thesis tackles the problem of knowledge discovery over KGs built from heterogeneous data sources. We provide a neuro-symbolic artificial intelligence system that integrates symbolic and sub-symbolic frameworks to exploit the semantics encoded in a KG and its structure. The symbolic system relies on existing approaches of deductive databases to make explicit, implicit knowledge encoded in a KG. The proposed deductive database DSDS can derive new statements to ego networks given an abstract target prediction. Thus, DSDS minimizes data sparsity in KGs. In addition, a sub-symbolic system relies on knowledge graph embedding (KGE) models. KGE models are commonly applied in the KG completion task to represent entities in a KG in a low-dimensional vector space. However, KGE models are known to suffer from data sparsity, and a symbolic system assists in overcoming this fact. The proposed approach discovers knowledge given a target prediction in a KG and extracts unknown implicit information related to the target prediction. As a proof of concept, we have implemented the neuro-symbolic system on top of a KG for lung cancer to predict polypharmacy treatment effectiveness. The symbolic system implements a deductive system to deduce pharmacokinetic drug-drug interactions encoded in a set of rules through the Datalog program. Additionally, the sub-symbolic system predicts treatment effectiveness using a KGE model, which preserves the KG structure. An ablation study on the components of our approach is conducted, considering state-of-the-art KGE methods. The observed results provide evidence for the benefits of the neuro-symbolic integration of our approach, where the neuro-symbolic system for an abstract target prediction exhibits improved results. The enhancement of the results occurs because the symbolic system increases the prediction capacity of the sub-symbolic system. Moreover, the proposed neuro-symbolic artificial intelligence system in Industry 4.0 (I4.0) is evaluated, demonstrating its effectiveness in determining relatedness among standards and analyzing their properties to detect unknown relations in the I4.0KG. The results achieved allow us to conclude that the proposed neuro-symbolic approach for an abstract target prediction improves the prediction capability of KGE models by minimizing data sparsity in KGs

    Initiating organizational memories using ontology-based network analysis as a bootstrapping tool

    Get PDF
    An important problem for many kinds of knowledge systems is their initial set-up. It is difficult to choose the right information to include in such systems, and the right information is also a prerequisite for maximizing the uptake and relevance. To tackle this problem, most developers adopt heavyweight solutions and rely on a faithful continuous interaction with users to create and improve content. In this paper, we explore the use of an automatic, lightweight ontology-based solution to the bootstrapping problem, in which domain-describing ontologies are analysed to uncover significant yet implicit relationships between instances. We illustrate the approach by using such an analysis to provide content automatically for the initial set-up of an organizational memory
    • …
    corecore