296 research outputs found

    Automatic Detection of Insecure Codes in Stack Overflow

    Get PDF
    As the popularity of modern social coding paradigm such as Stack Overflow grows, its potential security risks increase as well (e.g., insecure codes could be easily embedded and distributed). To address this largely overlooked issue, we bring a new insight to exploit social coding properties in addition to code content for automatic detection of insecure code snippets in Stack Overflow. To determine if the given code snippets are insecure, we not only analyze the code content, but also utilize various kinds of relations among users, badges, questions, answers, code snippets and keywords in Stack Overflow. To model the rich semantic relationships, we first introduce a structured heterogeneous information network (HIN) for representation and then use meta-path based approach to incorporate higher-level semantics to build up relatedness over code snippets. Later, we propose two different novel network embedding models named Snippet2vec and CodeHin2Vec for representation learning in HIN to automate the insecure code snippet detection in Stack Overflow. More specifically, Snippet2vec learns the low dimensional representations for the nodes (i.e., code snippets) in the HIN where both the HIN structures and semantics are maximally preserved, while CodeHin2Vec utilizes HIN to depict relatedness over code snippets to generate code-to-code sequences, based on which sequence-to-sequence (seq2seq) concept in machine translation is further leveraged to learn representations of code snippets. Accordingly, we developed systems ICSD and iTrustSO which integrate our proposed methods respectively in insecure code snippet detection in Stack Overflow. Comprehensive experiments on the data collections from Stack Overflow are conducted to validate the effectiveness of our developed systems by comparisons with the state-of-the-art baseline methods

    Proceedings of the 1st Doctoral Consortium at the European Conference on Artificial Intelligence (DC-ECAI 2020)

    Get PDF
    1st Doctoral Consortium at the European Conference on Artificial Intelligence (DC-ECAI 2020), 29-30 August, 2020 Santiago de Compostela, SpainThe DC-ECAI 2020 provides a unique opportunity for PhD students, who are close to finishing their doctorate research, to interact with experienced researchers in the field. Senior members of the community are assigned as mentors for each group of students based on the student’s research or similarity of research interests. The DC-ECAI 2020, which is held virtually this year, allows students from all over the world to present their research and discuss their ongoing research and career plans with their mentor, to do networking with other participants, and to receive training and mentoring about career planning and career option

    Deep Neural Networks based Meta-Learning for Network Intrusion Detection

    Full text link
    The digitization of different components of industry and inter-connectivity among indigenous networks have increased the risk of network attacks. Designing an intrusion detection system to ensure security of the industrial ecosystem is difficult as network traffic encompasses various attack types, including new and evolving ones with minor changes. The data used to construct a predictive model for computer networks has a skewed class distribution and limited representation of attack types, which differ from real network traffic. These limitations result in dataset shift, negatively impacting the machine learning models' predictive abilities and reducing the detection rate against novel attacks. To address the challenges, we propose a novel deep neural network based Meta-Learning framework; INformation FUsion and Stacking Ensemble (INFUSE) for network intrusion detection. First, a hybrid feature space is created by integrating decision and feature spaces. Five different classifiers are utilized to generate a pool of decision spaces. The feature space is then enriched through a deep sparse autoencoder that learns the semantic relationships between attacks. Finally, the deep Meta-Learner acts as an ensemble combiner to analyze the hybrid feature space and make a final decision. Our evaluation on stringent benchmark datasets and comparison to existing techniques showed the effectiveness of INFUSE with an F-Score of 0.91, Accuracy of 91.6%, and Recall of 0.94 on the Test+ dataset, and an F-Score of 0.91, Accuracy of 85.6%, and Recall of 0.87 on the stringent Test-21 dataset. These promising results indicate the strong generalization capability and the potential to detect network attacks.Comment: Pages: 15, Figures: 10 and Tables:
    • …
    corecore