17 research outputs found

    PhysCap: Physically Plausible Monocular 3D Motion Capture in Real Time

    Get PDF
    Marker-less 3D human motion capture from a single colour camera has seen significant progress. However, it is a very challenging and severely ill-posed problem. In consequence, even the most accurate state-of-the-art approaches have significant limitations. Purely kinematic formulations on the basis of individual joints or skeletons, and the frequent frame-wise reconstruction in state-of-the-art methods greatly limit 3D accuracy and temporal stability compared to multi-view or marker-based motion capture. Further, captured 3D poses are often physically incorrect and biomechanically implausible, or exhibit implausible environment interactions (floor penetration, foot skating, unnatural body leaning and strong shifting in depth), which is problematic for any use case in computer graphics. We, therefore, present PhysCap, the first algorithm for physically plausible, real-time and marker-less human 3D motion capture with a single colour camera at 25 fps. Our algorithm first captures 3D human poses purely kinematically. To this end, a CNN infers 2D and 3D joint positions, and subsequently, an inverse kinematics step finds space-time coherent joint angles and global 3D pose. Next, these kinematic reconstructions are used as constraints in a real-time physics-based pose optimiser that accounts for environment constraints (e.g., collision handling and floor placement), gravity, and biophysical plausibility of human postures. Our approach employs a combination of ground reaction force and residual force for plausible root control, and uses a trained neural network to detect foot contact events in images. Our method captures physically plausible and temporally stable global 3D human motion, without physically implausible postures, floor penetrations or foot skating, from video in real time and in general scenes. The video is available at http://gvv.mpi-inf.mpg.de/projects/PhysCapComment: 16 pages, 11 figure

    {PhysCap}: {P}hysically Plausible Monocular {3D} Motion Capture in Real Time

    Get PDF

    Scaled Autonomy for Networked Humanoids

    Get PDF
    Humanoid robots have been developed with the intention of aiding in environments designed for humans. As such, the control of humanoid morphology and effectiveness of human robot interaction form the two principal research issues for deploying these robots in the real world. In this thesis work, the issue of humanoid control is coupled with human robot interaction under the framework of scaled autonomy, where the human and robot exchange levels of control depending on the environment and task at hand. This scaled autonomy is approached with control algorithms for reactive stabilization of human commands and planned trajectories that encode semantically meaningful motion preferences in a sequential convex optimization framework. The control and planning algorithms have been extensively tested in the field for robustness and system verification. The RoboCup competition provides a benchmark competition for autonomous agents that are trained with a human supervisor. The kid-sized and adult-sized humanoid robots coordinate over a noisy network in a known environment with adversarial opponents, and the software and routines in this work allowed for five consecutive championships. Furthermore, the motion planning and user interfaces developed in the work have been tested in the noisy network of the DARPA Robotics Challenge (DRC) Trials and Finals in an unknown environment. Overall, the ability to extend simplified locomotion models to aid in semi-autonomous manipulation allows untrained humans to operate complex, high dimensional robots. This represents another step in the path to deploying humanoids in the real world, based on the low dimensional motion abstractions and proven performance in real world tasks like RoboCup and the DRC

    Vision for Social Robots: Human Perception and Pose Estimation

    Get PDF
    In order to extract the underlying meaning from a scene captured from the surrounding world in a single still image, social robots will need to learn the human ability to detect different objects, understand their arrangement and relationships relative both to their own parts and to each other, and infer the dynamics under which they are evolving. Furthermore, they will need to develop and hold a notion of context to allow assigning different meanings (semantics) to the same visual configuration (syntax) of a scene. The underlying thread of this Thesis is the investigation of new ways for enabling interactions between social robots and humans, by advancing the visual perception capabilities of robots when they process images and videos in which humans are the main focus of attention. First, we analyze the general problem of scene understanding, as social robots moving through the world need to be able to interpret scenes without having been assigned a specific preset goal. Throughout this line of research, i) we observe that human actions and interactions which can be visually discriminated from an image follow a very heavy-tailed distribution; ii) we develop an algorithm that can obtain a spatial understanding of a scene by only using cues arising from the effect of perspective on a picture of a person’s face; and iii) we define a novel taxonomy of errors for the task of estimating the 2D body pose of people in images to better explain the behavior of algorithms and highlight their underlying causes of error. Second, we focus on the specific task of 3D human pose and motion estimation from monocular 2D images using weakly supervised training data, as accurately predicting human pose will open up the possibility of richer interactions between humans and social robots. We show that when 3D ground-truth data is only available in small quantities, or not at all, it is possible to leverage knowledge about the physical properties of the human body, along with additional constraints related to alternative types of supervisory signals, to learn models that can regress the full 3D pose of the human body and predict its motions from monocular 2D images. Taken in its entirety, the intent of this Thesis is to highlight the importance of, and provide novel methodologies for, social robots' ability to interpret their surrounding environment, learn in a way that is robust to low data availability, and generalize previously observed behaviors to unknown situations in a similar way to humans.</p

    Pose Invariant Gait Analysis And Reconstruction

    Get PDF
    One of the unique advantages of human gait is that it can be perceived from a distance. A varied range of research has been undertaken within the field of gait recognition. However, in almost all circumstances subjects have been constrained to walk fronto-parallel to the camera with a single walking speed. In this thesis we show that gait has sufficient properties that allows us to exploit the structure of articulated leg motion within single view sequences, in order to remove the unknown subject pose and reconstruct the underlying gait signature, with no prior knowledge of the camera calibration. Articulated leg motion is approximately planar, since almost all of the perceived motion is contained within a single limb swing plane. The variation of motion out of this plane is subtle and negligible in comparison to this major plane of motion. Subsequently, we can model human motion by employing a cardboard person assumption. A subject's body and leg segments may be represented by repeating spatio-temporal motion patterns within a set of bilaterally symmetric limb planes. The static features of gait are defined as quantities that remain invariant over the full range of walking motions. In total, we have identified nine static features of articulated leg motion, corresponding to the fronto-parallel view of gait, that remain invariant to the differences in the mode of subject motion. These features are hypothetically unique to each individual, thus can be used as suitable parameters for biometric identification. We develop a stratified approach to linear trajectory gait reconstruction that uses the rigid bone lengths of planar articulated leg motion in order to reconstruct the fronto-parallel view of gait. Furthermore, subject motion commonly occurs within a fixed ground plane and is imaged by a static camera. In general, people tend to walk in straight lines with constant velocity. Imaged gait can then be split piecewise into natural segments of linear motion. If two or more sufficiently different imaged trajectories are available then the calibration of the camera can be determined. Subsequently, the total pattern of gait motion can be globally parameterised for all subjects within an image sequence. We present the details of a sparse method that computes the maximum likelihood estimate of this set of parameters, then conclude with a reconstruction error analysis corresponding to an example image sequence of subject motion

    Climbing and Walking Robots

    Get PDF
    Nowadays robotics is one of the most dynamic fields of scientific researches. The shift of robotics researches from manufacturing to services applications is clear. During the last decades interest in studying climbing and walking robots has been increased. This increasing interest has been in many areas that most important ones of them are: mechanics, electronics, medical engineering, cybernetics, controls, and computers. Today’s climbing and walking robots are a combination of manipulative, perceptive, communicative, and cognitive abilities and they are capable of performing many tasks in industrial and non- industrial environments. Surveillance, planetary exploration, emergence rescue operations, reconnaissance, petrochemical applications, construction, entertainment, personal services, intervention in severe environments, transportation, medical and etc are some applications from a very diverse application fields of climbing and walking robots. By great progress in this area of robotics it is anticipated that next generation climbing and walking robots will enhance lives and will change the way the human works, thinks and makes decisions. This book presents the state of the art achievments, recent developments, applications and future challenges of climbing and walking robots. These are presented in 24 chapters by authors throughtot the world The book serves as a reference especially for the researchers who are interested in mobile robots. It also is useful for industrial engineers and graduate students in advanced study

    Robot manipulation in human environments

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2007.Includes bibliographical references (p. 211-228).Human environments present special challenges for robot manipulation. They are often dynamic, difficult to predict, and beyond the control of a robot engineer. Fortunately, many characteristics of these settings can be used to a robot's advantage. Human environments are typically populated by people, and a robot can rely on the guidance and assistance of a human collaborator. Everyday objects exhibit common, task-relevant features that reduce the cognitive load required for the object's use. Many tasks can be achieved through the detection and control of these sparse perceptual features. And finally, a robot is more than a passive observer of the world. It can use its body to reduce its perceptual uncertainty about the world. In this thesis we present advances in robot manipulation that address the unique challenges of human environments. We describe the design of a humanoid robot named Domo, develop methods that allow Domo to assist a person in everyday tasks, and discuss general strategies for building robots that work alongside people in their homes and workplaces.by Aaron Ladd Edsinger.Ph.D

    A Posture Sequence Learning System for an Anthropomorphic Robotic Hand

    Get PDF
    The paper presents a cognitive architecture for posture learning of an anthropomorphic robotic hand. Our approach is aimed to allow the robotic system to perform complex perceptual operations, to interact with a human user and to integrate the perceptions by a cognitive representation of the scene and the observed actions. The anthropomorphic robotic hand imitates the gestures acquired by the vision system in order to learn meaningful movements, to build its knowledge by different conceptual spaces and to perform complex interaction with the human operator

    Advanced Knowledge Application in Practice

    Get PDF
    The integration and interdependency of the world economy leads towards the creation of a global market that offers more opportunities, but is also more complex and competitive than ever before. Therefore widespread research activity is necessary if one is to remain successful on the market. This book is the result of research and development activities from a number of researchers worldwide, covering concrete fields of research
    corecore