46 research outputs found

    ESMD Space Grant Faculty Report

    Get PDF
    The strength of the Exploration Systems Mission Directorate ESMD Faculty Project lies in its ability to meet National Aeronautics Space Administration NASA's Strategic Educational Outcome 1 by developing a sustainable and long-term integration of student involvement at academic institutions with all NASA Centers. This outcome is achieved by a three-fold approach: 1) by collecting Senior Design projects pertaining to Constellation work performed at each of the ten NASA Centers, 2) by engaging students at Minority Serving Institutions in the art of systems engineering and systems design of technologies required for space exploration, and 3) by identifying potential internships at each Center relative to exploration that provide students who are supported by their institutional Space Grant to engage in on-going mission-level and explorative systems designs. The objectives of the ESMD Faculty Project are to: 1. Aid the Centers (both Education Offices and associated technical organizations) in providing relevant opportunities for the ESMD Space Grant Program to support student and faculty in Senior Design projects 2. Enable better matches between the ESMD work required and what the Space Grant Consortia can do to effectively contribute to NASA programs 3. Provide the Space Grant Consortia an opportunity to strengthen relations with the NASA Centers 4. Develop better collective understanding of the U.S. Space Exploration Policy by the Center, Space Grant, faculty, Education Office, and students 5. Enable Space Grant institution faculty to better prepare their students to meet current and future NASA needs 6. Enable the Center Education Offices to strengthen their ties to their technical organizations and Space Grant Consortia 7. Aid KSC in gaining a greater and more detailed understanding of each of the Center activities Senior Design projects are intended to stimulate undergraduate students on current NASA activities related to lunar, Mars, and other planetary missions and to bring out innovative and novel ideas that can be used to complement those currently under development at respective NASA Centers. Additionally, such academic involvement would better the prospects for graduating seniors to pursue graduate studies and to seek careers in the space industry with a strong sense for systems engineering and understanding of design concepts. Internships, on the other hand, are intended to provide hands-on experience to students by engaging them in diverse state-of-the-art technology development, prototype bread-boarding, computer modeling and simulations, hardware and software testing, and other activities that provide students a strong perspective of NASA's vision and mission in enhancing the knowledge of Earth and space planetary sciences. Ten faculty members, each from a Space Grant Consortium-affiliated university, worked at ten NASA Centers for five weeks between June 2 and July 3, 2008. The project objectives listed above were achieved. In addition to collecting data on Senior Design ideas and identifying possible internships that would benefit NASA/ESMD, the faculty fellows promoted and collected data when required for other ESMD-funded programs and helped the Center's Education Office, as,needed.

    Is that an opportunity? : a multilevel investigation of the individual-opportunity nexus and opportunity beliefs.

    Get PDF
    Early entrepreneurial action focuses on opportunities and involves two distinct evaluative phases: (1) recognizing that something is an opportunity for somebody and (2) deciding whether or not one wants to pursue exploitation of a particular opportunity. Scholars primarily explain the first of these phases using individual differences. However, entrepreneurial action involves the nexus of opportunities and individuals. In my dissertation, I examine the independent effects of opportunity differences on opportunity recognition as well as the degree to which they are contingent on individual-level constructs. Specifically, I examine this phenomenon in the context of technology commercialization. I use analogical problem solving to explain how individuals develop perceptions about their certainty that a technology can: (1) be feasibly implemented to a market, and (2) actually solve a market’s problem. I predict that individuals will be more certain an idea is actually an opportunity when a technology and market share Superficial features (people, objects, materials), Structural relationships (technology capability resembles market’s latent demand) and Procedural details (original user interaction with technology resembles a new market’s user interaction with technology). To capture the essence of entrepreneurship’s opportunity-individual nexus, I theorize that the direct effects of Superficial, Structural and Procedural Similarities are contingent upon individual-level factors, such as Prior Knowledge and Global versus Local Precedence. The results of this dissertation provide evidence that the newly introduced opportunity difference, Procedural Similarity, does positively influence Opportunity Beliefs consistent with Structural Alignment Theory. I also find support for the prediction that the relationship between Procedural Similarity and Opportunity Beliefs is contingent upon individuals’ Global versus Local Precedence. A Global Precedence refers to a tendency to attend to configural aspects of information prior to individual pieces of information. A Local Precedence refers to a tendency to focus on details and individual pieces of information rather than focus on how many pieces of information combine to create a big picture. I find that the relationship between Procedural Similarity and Opportunity Beliefs is stronger for individuals who process information locally than it is for individuals who process information globally

    Análisis de la adopción y uso de las revisiones de software

    Get PDF
    Incluye bibliografía.El trabajo aborda un tema de indudable relevancia científica, tanto teórica como práctica: el análisis de la adopción y el uso de las revisiones de software

    Can Upward Brand Extensions be an Opportunity for Marketing Managers During the Covid-19 Pandemic and Beyond?

    Get PDF
    Early COVID-19 research has guided current managerial practice by introducing more products across different product categories as consumers tried to avoid perceived health risks from food shortages, i.e. horizontal brand extensions. For example, Leon, a fast-food restaurant in the UK, introduced a new range of ready meal products. However, when the food supply stabilised, availability may no longer be a concern for consumers. Instead, job losses could be a driver of higher perceived financial risks. Meanwhile, it remains unknown whether the perceived health or financial risks play a more significant role on consumers’ consumptions. Our preliminary survey shows perceived health risks outperform perceived financial risks to positively influence purchase intention during COVID-19. We suggest such a result indicates an opportunity for marketers to consider introducing premium priced products, i.e. upward brand extensions. The risk-as�feelings and signalling theories were used to explain consumer choice under risk may adopt affective heuristic processing, using minimal cognitive efforts to evaluate products. Based on this, consumers are likely to be affected by the salient high-quality and reliable product cue of upward extension signalled by its premium price level, which may attract consumers to purchase when they have high perceived health risks associated with COVID-19. Addressing this, a series of experimental studies confirm that upward brand extensions (versus normal new product introductions) can positively moderate the positive effect between perceived health risks associated with COVID-19 and purchase intention. Such an effect can be mediated by affective heuristic information processing. The results contribute to emergent COVID-19 literature and managerial practice during the pandemic but could also inform post-pandemic thinking around vertical brand extensions

    Selecting educational computer software and evaluating its use, with special reference to biology education

    Get PDF
    In the field of Biology there is a reasonable amount of software available for educational use but in the researcher's experience there are few teachers who take the computer into the classroom/laboratory, Teachers will make use of video machines and tape recorders quite happily, but a computer is a piece of apparatus which they are not prepared to use in the classroom/laboratory. This thesis is an attempt to devise an educational package, consisting of a Selection Form and an Evaluation Form, which can be used by teachers to select and evaluate educational software in the field of Biology. The forms were designed specifically for teachers to use in preparation of a computer lesson. The evaluation package also provides the teacher with a means of identifying whether the lesson has achieved its objectives or not. The teacher may also be provided with feedback about the lesson. The data is gathered by means of a questionnaire which the pupils complete. It would appear that teachers are uncertain as regards the purchase of software for their subject from the many catalogues that are available. The evaluation package implemented in this research can be regarded as the beginnings of a data base for the accumulation of information to assist teachers with details on which software to select. Evidence is provided in this thesis for the practical application of the Selection and Evaluation Forms, using Biology software

    Millimetre-Resolution Photonics-Assisted Radar

    Get PDF
    Radar is essential in applications such as anti-collision systems for driving, airport security screening, and contactless vital sign detection. The demand for high-resolution and real-time recognition in radar applications is growing, driving the development of electronic radars with increased bandwidth, higher frequency, and improved reconfigurability. However, conventional electronic approaches are challenging due to limitations in synthesising radar signals, limiting performance. In contrast, microwave photonics-enabled radars have gained interest because they offer numerous benefits compared to traditional electronic methods. Photonics-assisted techniques provide a broad fractional bandwidth at the optical carrier frequency and enable spectrum manipulation, producing wideband and high-resolution radar signals in various formats. However, photonic-based methods face limitations like low time-frequency linearity due to the inherent nonlinearity of lasers, restricted RF bandwidth, limited stability of the photonic frequency multipliers, and difficulties in achieving extended sensing with dispersion-based techniques. In response to these challenges, this thesis presents approaches for generating broadband radar signals with high time-frequency linearity using recirculated unidirectional optical frequency-shifted modulation. The photonics-assisted system allows flexible bandwidth tuning from sub-GHz to over 30 GHz and requires only MHz-level electronics. Such a system offers millimetre-level range resolution and a high imaging refresh rate, detecting fast-moving objects using the ISAR technique. With millimetre-level resolution and micrometre accuracy, this system supports contactless vital sign detection, capturing precise respiratory patterns from simulators and a living body using a cane toad. In the end, we highlight the promise of merging radar and LiDAR, foreshadowing future advancements in sensor fusion for enhanced sensing performance and resilience

    Development of Next-Generation Protective Clothing and High-Performing Face Masks

    Full text link
    There is an ongoing global threat of highly transmissible infectious disease outbreaks such as the COVID-19 pandemic. Consequently, the demand for effective, sustainable, and reusable personal protective equipment (PPE) is high for the protection of the frontline workers and community, especially with possible vaccine-resistant variants emerging. However, the commonly used PPE, especially protective clothing, and face masks, has several drawbacks and improvement areas. In this thesis, three state-of-the-art reviews (Chapters 2A, 2B, and 2C) identified the challenges and limitations of commonly used protective clothing and face masks. Potential new materials, technologies, and strategies were also addressed to overcome the limitations and challenges. Lastresort strategies were outlined to help people navigate their choices during mask shortages. In addition, it was revealed that the multifunctional performance of PPE could be significantly enhanced with the application of advanced materials such as graphene and metal nanoparticles (NPs). Accordingly, in Chapters 3 and 4, reduced graphene oxide (RGO) and copper (Cu)/silver (Ag) NPs incorporated cotton and silk fabrics were developed by a facile dip and dry method using a silane crosslinking agent followed by chemical reduction and vacuum heat treatment. The developed fabrics demonstrated excellent multifunctional activities such as hydrophobicity, electroconductivity, Joule heating capacity, heat dissipation, thermal stability, mechanical stability, UV shielding, and washing durability. Especially, the RGO- and Cu-NPs-embedded cotton and silk fabrics exhibited the best multifunctional performances with high washing durability among all other fabric samples. To further assess the potential of protective clothing, antimicrobial activity and biocompatibility of the developed fabrics were investigated in Chapter 5. The graphene and Cu/Ag NPs incorporated fabrics showed excellent activity against bacteria (Escherichia coli, Pseudomonas aeruginosa, and Staphylococcus aureus) and fungus (Candida albicans). On top of the antimicrobial activity, the developed fabrics showed low cytotoxicity, making them a potential candidate for application in next-generation PPE. During COVID-19, due to the massive global shortage of disposable masks/respirators, cloth masks became a mainstay and showed hope of being a sustainable alternative to medical masks. Chapter 6 provides a comprehensive study using violent respiratory events (sneeze) and evaluating all dimensions of protection (respiratory droplet blocking efficiency, water resistance, and breathing resistance) to develop a blueprint for the optimal design of a high-performing reusable cloth mask that can outperform a disposable surgical mask. The results reveal that droplet blocking efficiency increases by ∼20 times per additional fabric layer. A minimum of 3 layers with a combination of cotton/linen (hydrophilic) for the inner layer, blends for the middle–layer, and polyester/nylon (hydrophobic) for the outer–layer is required to resemble the performance of surgical masks. The fabrics' average thread count and porosity should be greater than 200 and less than 2 %, respectively. Overall, the developed graphene/NPs incorporated multifunctional fabrics, and face mask design proved to be a breakthrough to prevail over the limitations of the conventional PPE materials. They hold great promise to be applied to a broader range of PPE and could provide a sustainable PPE solution globally
    corecore