36 research outputs found

    Semantic Biclustering

    Get PDF
    Tato disertační práce se zaměřuje na problém hledání interpretovatelných a prediktivních vzorů, které jsou vyjádřeny formou dvojshluků, se specializací na biologická data. Prezentované metody jsou souhrnně označovány jako sémantické dvojshlukování, jedná se o podobor dolování dat. Termín sémantické dvojshlukování je použit z toho důvodu, že zohledňuje proces hledání koherentních podmnožin řádků a sloupců, tedy dvojshluků, v 2-dimensionální binární matici a zárove ň bere také v potaz sémantický význam prvků v těchto dvojshlucích. Ačkoliv byla práce motivována biologicky orientovanými daty, vyvinuté algoritmy jsou obecně aplikovatelné v jakémkoli jiném výzkumném oboru. Je nutné pouze dodržet požadavek na formát vstupních dat. Disertační práce představuje dva originální a v tomto ohledu i základní přístupy pro hledání sémantických dvojshluků, jako je Bicluster enrichment analysis a Rule a tree learning. Jelikož tyto metody nevyužívají vlastní hierarchické uspořádání termů v daných ontologiích, obecně je běh těchto algoritmů dlouhý čin může docházet k indukci hypotéz s redundantními termy. Z toho důvodu byl vytvořen nový operátor zjemnění. Tento operátor byl včleněn do dobře známého algoritmu CN2, kde zavádí dvě redukční procedury: Redundant Generalization a Redundant Non-potential. Obě procedury pomáhají dramaticky prořezat prohledávaný prostor pravidel a tím umožňují urychlit proces indukce pravidel v porovnání s tradičním operátorem zjemnění tak, jak je původně prezentován v CN2. Celý algoritmus spolu s redukčními metodami je publikován ve formě R balííčku, který jsme nazvali sem1R. Abychom ukázali i možnost praktického užití metody sémantického dvojshlukování na reálných biologických problémech, v disertační práci dále popisujeme a specificky upravujeme algoritmus sem1R pro dv+ úlohy. Zaprvé, studujeme praktickou aplikaci algoritmu sem1R v analýze E-3 ubikvitin ligázy v trávicí soustavě s ohledem na potenciál regenerace tkáně. Zadruhé, kromě objevování dvojshluků v dat ech genové exprese, adaptujeme algoritmus sem1R pro hledání potenciálne patogenních genetických variant v kohortě pacientů.This thesis focuses on the problem of finding interpretable and predic tive patterns, which are expressed in the form of biclusters, with an orientation to biological data. The presented methods are collectively called semantic biclustering, as a subfield of data mining. The term semantic biclustering is used here because it reflects both a process of finding coherent subsets of rows and columns in a 2-dimensional binary matrix and simultaneously takes into account a mutual semantic meaning of elements in such biclusters. In spite of focusing on applications of algorithms in biological data, the developed algorithms are generally applicable to any other research field, there are only limitations on the format of the input data. The thesis introduces two novel, and in that context basic, approaches for finding semantic biclusters, as Bicluster enrichment analysis and Rule and tree learning. Since these methods do not exploit the native hierarchical order of terms of input ontologies, the run-time of algorithms is relatively long in general or an induced hypothesis might have terms that are redundant. For this reason, a new refinement operator has been invented. The refinement operator was incorporated into the well-known CN2 algorithm and uses two reduction procedures: Redundant Generalization and Redundant Non-potential, both of which help to dramatically prune the rule space and consequently, speed-up the entire process of rule induction in comparison with the traditional refinement operator as is presented in CN2. The reduction procedures were published as an R package that we called sem1R. To show a possible practical usage of semantic biclustering in real biological problems, the thesis also describes and specifically adapts the algorithm for two real biological problems. Firstly, we studied a practical application of sem1R algorithm in an analysis of E-3 ubiquitin ligase in the gastrointestinal tract with respect to tissue regeneration potential. Secondly, besides discovering biclusters in gene expression data, we adapted the sem1R algorithm for a different task, concretely for finding potentially pathogenic genetic variants in a cohort of patients

    Data Mining Using the Crossing Minimization Paradigm

    Get PDF
    Our ability and capacity to generate, record and store multi-dimensional, apparently unstructured data is increasing rapidly, while the cost of data storage is going down. The data recorded is not perfect, as noise gets introduced in it from different sources. Some of the basic forms of noise are incorrect recording of values and missing values. The formal study of discovering useful hidden information in the data is called Data Mining. Because of the size, and complexity of the problem, practical data mining problems are best attempted using automatic means. Data Mining can be categorized into two types i.e. supervised learning or classification and unsupervised learning or clustering. Clustering only the records in a database (or data matrix) gives a global view of the data and is called one-way clustering. For a detailed analysis or a local view, biclustering or co-clustering or two-way clustering is required involving the simultaneous clustering of the records and the attributes. In this dissertation, a novel fast and white noise tolerant data mining solution is proposed based on the Crossing Minimization (CM) paradigm; the solution works for one-way as well as two-way clustering for discovering overlapping biclusters. For decades the CM paradigm has traditionally been used for graph drawing and VLSI (Very Large Scale Integration) circuit design for reducing wire length and congestion. The utility of the proposed technique is demonstrated by comparing it with other biclustering techniques using simulated noisy, as well as real data from Agriculture, Biology and other domains. Two other interesting and hard problems also addressed in this dissertation are (i) the Minimum Attribute Subset Selection (MASS) problem and (ii) Bandwidth Minimization (BWM) problem of sparse matrices. The proposed CM technique is demonstrated to provide very convincing results while attempting to solve the said problems using real public domain data. Pakistan is the fourth largest supplier of cotton in the world. An apparent anomaly has been observed during 1989-97 between cotton yield and pesticide consumption in Pakistan showing unexpected periods of negative correlation. By applying the indigenous CM technique for one-way clustering to real Agro-Met data (2001-2002), a possible explanation of the anomaly has been presented in this thesis

    Graphical Model approaches for Biclustering

    Get PDF
    In many scientific areas, it is crucial to group (cluster) a set of objects, based on a set of observed features. Such operation is widely known as Clustering and it has been exploited in the most different scenarios ranging from Economics to Biology passing through Psychology. Making a step forward, there exist contexts where it is crucial to group objects and simultaneously identify the features that allow to recognize such objects from the others. In gene expression analysis, for instance, the identification of subsets of genes showing a coherent pattern of expression in subsets of objects/samples can provide crucial information about active biological processes. Such information, which cannot be retrieved by classical clustering approaches, can be extracted with the so called Biclustering, a class of approaches which aim at simultaneously clustering both rows and columns of a given data matrix (where each row corresponds to a different object/sample and each column to a different feature). The problem of biclustering, also known as co-clustering, has been recently exploited in a wide range of scenarios such as Bioinformatics, market segmentation, data mining, text analysis and recommender systems. Many approaches have been proposed to address the biclustering problem, each one characterized by different properties such as interpretability, effectiveness or computational complexity. A recent trend involves the exploitation of sophisticated computational models (Graphical Models) to face the intrinsic complexity of biclustering, and to retrieve very accurate solutions. Graphical Models represent the decomposition of a global objective function to analyse in a set of smaller/local functions defined over a subset of variables. The advantages in using Graphical Models relies in the fact that the graphical representation can highlight useful hidden properties of the considered objective function, plus, the analysis of smaller local problems can be dealt with less computational effort. Due to the difficulties in obtaining a representative and solvable model, and since biclustering is a complex and challenging problem, there exist few promising approaches in literature based on Graphical models facing biclustering. 3 This thesis is inserted in the above mentioned scenario and it investigates the exploitation of Graphical Models to face the biclustering problem. We explored different type of Graphical Models, in particular: Factor Graphs and Bayesian Networks. We present three novel algorithms (with extensions) and evaluate such techniques using available benchmark datasets. All the models have been compared with the state-of-the-art competitors and the results show that Factor Graph approaches lead to solid and efficient solutions for dataset of contained dimensions, whereas Bayesian Networks can manage huge datasets, with the overcome that setting the parameters can be not trivial. As another contribution of the thesis, we widen the range of biclustering applications by studying the suitability of these approaches in some Computer Vision problems where biclustering has been never adopted before. Summarizing, with this thesis we provide evidence that Graphical Model techniques can have a significant impact in the biclustering scenario. Moreover, we demonstrate that biclustering techniques are ductile and can produce effective solutions in the most different fields of applications

    Data mining using the crossing minimization paradigm

    Get PDF
    Our ability and capacity to generate, record and store multi-dimensional, apparently unstructured data is increasing rapidly, while the cost of data storage is going down. The data recorded is not perfect, as noise gets introduced in it from different sources. Some of the basic forms of noise are incorrect recording of values and missing values. The formal study of discovering useful hidden information in the data is called Data Mining. Because of the size, and complexity of the problem, practical data mining problems are best attempted using automatic means. Data Mining can be categorized into two types i.e. supervised learning or classification and unsupervised learning or clustering. Clustering only the records in a database (or data matrix) gives a global view of the data and is called one-way clustering. For a detailed analysis or a local view, biclustering or co-clustering or two-way clustering is required involving the simultaneous clustering of the records and the attributes. In this dissertation, a novel fast and white noise tolerant data mining solution is proposed based on the Crossing Minimization (CM) paradigm; the solution works for one-way as well as two-way clustering for discovering overlapping biclusters. For decades the CM paradigm has traditionally been used for graph drawing and VLSI (Very Large Scale Integration) circuit design for reducing wire length and congestion. The utility of the proposed technique is demonstrated by comparing it with other biclustering techniques using simulated noisy, as well as real data from Agriculture, Biology and other domains. Two other interesting and hard problems also addressed in this dissertation are (i) the Minimum Attribute Subset Selection (MASS) problem and (ii) Bandwidth Minimization (BWM) problem of sparse matrices. The proposed CM technique is demonstrated to provide very convincing results while attempting to solve the said problems using real public domain data. Pakistan is the fourth largest supplier of cotton in the world. An apparent anomaly has been observed during 1989-97 between cotton yield and pesticide consumption in Pakistan showing unexpected periods of negative correlation. By applying the indigenous CM technique for one-way clustering to real Agro-Met data (2001-2002), a possible explanation of the anomaly has been presented in this thesis.EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    User-Specific Bicluster-based Collaborative Filtering

    Get PDF
    Tese de mestrado, Ciência de Dados, Universidade de Lisboa, Faculdade de Ciências, 2020Collaborative Filtering is one of the most popular and successful approaches for Recommender Systems. However, some challenges limit the effectiveness of Collaborative Filtering approaches when dealing with recommendation data, mainly due to the vast amounts of data and their sparse nature. In order to improve the scalability and performance of Collaborative Filtering approaches, several authors proposed successful approaches combining Collaborative Filtering with clustering techniques. In this work, we study the effectiveness of biclustering, an advanced clustering technique that groups rows and columns simultaneously, in Collaborative Filtering. When applied to the classic U-I interaction matrices, biclustering considers the duality relations between users and items, creating clusters of users who are similar under a particular group of items. We propose USBCF, a novel biclustering-based Collaborative Filtering approach that creates user specific models to improve the scalability of traditional CF approaches. Using a realworld dataset, we conduct a set of experiments to objectively evaluate the performance of the proposed approach, comparing it against baseline and state-of-the-art Collaborative Filtering methods. Our results show that the proposed approach can successfully suppress the main limitation of the previously proposed state-of-the-art biclustering-based Collaborative Filtering (BBCF) since BBCF can only output predictions for a small subset of the system users and item (lack of coverage). Moreover, USBCF produces rating predictions with quality comparable to the state-of-the-art approaches

    An Outlook on Design Technologies for Future Integrated Systems

    Get PDF
    The economic and social demand for ubiquitous and multifaceted electronic systems-in combination with the unprecedented opportunities provided by the integration of various manufacturing technologies-is paving the way to a new class of heterogeneous integrated systems, with increased performance and connectedness and providing us with gateways to the living world. This paper surveys design requirements and solutions for heterogeneous systems and addresses design technologies for realizing them

    Bi-(N-) cluster editing and its biomedical applications

    Get PDF
    The extremely fast advances in wet-lab techniques lead to an exponential growth of heterogeneous and unstructured biological data, posing a great challenge to data integration in nowadays system biology. The traditional clustering approach, although widely used to divide the data into groups sharing common features, is less powerful in the analysis of heterogeneous data from n different sources (n _ 2). The co-clustering approach has been widely used for combined analyses of multiple networks to address the challenge of heterogeneity. In this thesis, novel methods for the co-clustering of large scale heterogeneous data sets are presented in the software package n-CluE: one exact algorithm and two heuristic algorithms based on the model of bi-/n-cluster editing by modeling the input as n-partite graphs and solving the clustering problem with various strategies. In the first part of the thesis, the complexity and the fixed-parameter tractability of the extended bicluster editing model with relaxed constraints are investigated, namely the ?-bicluster editing model and its NP-hardness is proven. Based on the results of this analysis, three strategies within the n-CluE software package are then established and discussed, together with the evaluations on performances and the systematic comparisons against other algorithms of the same type in solving bi-/n-cluster editing problem. To demonstrate the practical impact, three real-world analyses using n-CluE are performed, including (a) prediction of novel genotype-phenotype associations by clustering the data from Genome-Wide Association Studies; (b) comparison between n-CluE and eight other biclustering tools on GEO Omnibus microarray data sets; (c) drug repositioning predictions by co-clustering on drug, gene and disease networks. The outstanding performance of n-CluE in the real-world applications shows its strength and flexibility in integrating heterogeneous data and extracting biological relevant information in bioinformatic analyses.Die enormen Fortschritte im Bereich Labortechnik haben in jüngster Zeit zu einer exponentiell wachsenden Menge an heterogenen und unstrukturierten Daten geführt. Dies stellt eine große Herausforderung für systembiologische Forschung dar, innerhalb derer diese Datenmengen durch Datenintegration und Datamining zusammengefasst und in Kombination analysiert werden. Traditionelles Clustering ist eine vielseitig eingesetzte Methode, um Entitäten innerhalb grosser Datenmengen bezüglich ihrer Ähnlichkeit bestimmter Attribute zu gruppieren (“clustern„). Beim Clustern von heterogenen Daten aus n (n > 2) unterschiedlichen Quellen zeigen traditionelle Clusteringmethoden jedoch Schwächen. In solchen Fällen bieten Co-clusteringmethoden dadurch Vorteile, dass sie Datensätze gleichzeitig partitionieren können. In dieser Dissertation stelle ich neue Clusteringmethoden vor, die in der Software n-CluE zusammengeführt sind. Diese neuen Methoden wurden aus dem bi-/n-cluster editing heraus entwickelt und lösen durch Transformation der Eingangsdatensätze in n-partite Graphen mit verschiedenen Strategien das zugrundeliegende Clusteringproblem. Diese Dissertation ist in zwei verschiedene Teile gegliedert. Der erste Teil befasst sich eingehend mit der Komplexitätanalyse verschiedener erweiterter bicluster editing Modelle, die sog. ?-bicluster editing Modelle und es wird der Beweis der NP-Schwere erbracht. Basierend auf diesen theoretischen Gesichtspunkten präsentiere ich im zweiten Teil drei unterschiedliche Algorithmen, einen exakten Algorithmus und zwei Heuristiken und demonstriere ihre Leistungsfähigkeit und Robustheit im Vergleich mit anderen algorithmischen Herangehensweisen. Die Stärken von n-CluE werden anhand von drei realen Anwendungsbeispielen untermauert: (a) Die Vorhersage neuartiger Genotyp-Phänotyp-Assoziationen durch Biclustering-Analyse von Daten aus genomweiten Assoziationsstudien (GWAS);(b) Der Vergleich zwischen n-CluE und acht weiteren Softwarepaketen anhand von Bicluster-Analysen von Microarraydaten aus den Gene Expression Omnibus (GEO); (c) Die Vorhersage von Medikamenten-Repositionierung durch integrierte Analyse von Medikamenten-, Gen- und Krankeitsnetzwerken. Die Resultate zeigen eindrucksvoll die Stärken der n-CluE Software. Das Ergebnis ist eine leistungsstarke, robuste und flexibel erweiterbare Implementierung des Biclustering-Theorems zur Integration grosser heterogener Datenmengen für das Extrahieren biologisch relevanter Ergebnisse im Rahmen von bioinformatischen Studien

    Semantic systems biology of prokaryotes : heterogeneous data integration to understand bacterial metabolism

    Get PDF
    The goal of this thesis is to improve the prediction of genotype to phenotypeassociations with a focus on metabolic phenotypes of prokaryotes. This goal isachieved through data integration, which in turn required the development ofsupporting solutions based on semantic web technologies. Chapter 1 providesan introduction to the challenges associated to data integration. Semantic webtechnologies provide solutions to some of these challenges and the basics ofthese technologies are explained in the Introduction. Furthermore, the ba-sics of constraint based metabolic modeling and construction of genome scalemodels (GEM) are also provided. The chapters in the thesis are separated inthree related topics: chapters 2, 3 and 4 focus on data integration based onheterogeneous networks and their application to the human pathogen M. tu-berculosis; chapters 5, 6, 7, 8 and 9 focus on the semantic web based solutionsto genome annotation and applications thereof; and chapter 10 focus on thefinal goal to associate genotypes to phenotypes using GEMs. Chapter 2 provides the prototype of a workflow to efficiently analyze in-formation generated by different inference and prediction methods. This me-thod relies on providing the user the means to simultaneously visualize andanalyze the coexisting networks generated by different algorithms, heteroge-neous data sets, and a suite of analysis tools. As a show case, we have ana-lyzed the gene co-expression networks of M. tuberculosis generated using over600 expression experiments. Hereby we gained new knowledge about theregulation of the DNA repair, dormancy, iron uptake and zinc uptake sys-tems. Furthermore, it enabled us to develop a pipeline to integrate ChIP-seqdat and a tool to uncover multiple regulatory layers. In chapter 3 the prototype presented in chapter 2 is further developedinto the Synchronous Network Data Integration (SyNDI) framework, whichis based on Cytoscape and Galaxy. The functionality and usability of theframework is highlighted with three biological examples. We analyzed thedistinct connectivity of plasma metabolites in networks associated with highor low latent cardiovascular disease risk. We obtained deeper insights froma few similar inflammatory response pathways in Staphylococcus aureus infec-tion common to human and mouse. We identified not yet reported regulatorymotifs associated with transcriptional adaptations of M. tuberculosis.In chapter 4 we present a review providing a systems level overview ofthe molecular and cellular components involved in divalent metal homeosta-sis and their role in regulating the three main virulence strategies of M. tu-berculosis: immune modulation, dormancy and phagosome escape. With theuse of the tools presented in chapter 2 and 3 we identified a single regulatorycascade for these three virulence strategies that respond to limited availabilityof divalent metals in the phagosome. The tools presented in chapter 2 and 3 achieve data integration throughthe use of multiple similarity, coexistence, coexpression and interaction geneand protein networks. However, the presented tools cannot store additional(genome) annotations. Therefore, we applied semantic web technologies tostore and integrate heterogeneous annotation data sets. An increasing num-ber of widely used biological resources are already available in the RDF datamodel. There are however, no tools available that provide structural overviewsof these resources. Such structural overviews are essential to efficiently querythese resources and to assess their structural integrity and design. There-fore, in chapter 5, I present RDF2Graph, a tool that automatically recoversthe structure of an RDF resource. The generated overview enables users tocreate complex queries on these resources and to structurally validate newlycreated resources. Direct functional comparison support genotype to phenotype predictions.A prerequisite for a direct functional comparison is consistent annotation ofthe genetic elements with evidence statements. However, the standard struc-tured formats used by the public sequence databases to present genome an-notations provide limited support for data mining, hampering comparativeanalyses at large scale. To enable interoperability of genome annotations fordata mining application, we have developed the Genome Biology OntologyLanguage (GBOL) and associated infrastructure (GBOL stack), which is pre-sented in chapter 6. GBOL is provenance aware and thus provides a consistentrepresentation of functional genome annotations linked to the provenance.The provenance of a genome annotation describes the contextual details andderivation history of the process that resulted in the annotation. GBOL is mod-ular in design, extensible and linked to existing ontologies. The GBOL stackof supporting tools enforces consistency within and between the GBOL defi-nitions in the ontology. Based on GBOL, we developed the genome annotation pipeline SAPP (Se-mantic Annotation Platform with Provenance) presented in chapter 7. SAPPautomatically predicts, tracks and stores structural and functional annotationsand associated dataset- and element-wise provenance in a Linked Data for-mat, thereby enabling information mining and retrieval with Semantic Webtechnologies. This greatly reduces the administrative burden of handling mul-tiple analysis tools and versions thereof and facilitates multi-level large scalecomparative analysis. In turn this can be used to make genotype to phenotypepredictions. The development of GBOL and SAPP was done simultaneously. Duringthe development we realized that we had to constantly validated the data ex-ported to RDF to ensure coherence with the ontology. This was an extremelytime consuming process and prone to error, therefore we developed the Em-pusa code generator. Empusa is presented in chapter 8. SAPP has been successfully used to annotate 432 sequenced Pseudomonas strains and integrate the resulting annotation in a large scale functional com-parison using protein domains. This comparison is presented in chapter 9.Additionally, data from six metabolic models, nearly a thousand transcrip-tome measurements and four large scale transposon mutagenesis experimentswere integrated with the genome annotations. In this way, we linked gene es-sentiality, persistence and expression variability. This gave us insight into thediversity, versatility and evolutionary history of the Pseudomonas genus, whichcontains some important pathogens as well some useful species for bioengi-neering and bioremediation purposes. Genome annotation can be used to create GEM, which can be used to betterlink genotypes to phenotypes. Bio-Growmatch, presented in chapter 10, istool that can automatically suggest modification to improve a GEM based onphenotype data. Thereby integrating growth data into the complete processof modelling the metabolism of an organism. Chapter 11 presents a general discussion on how the chapters contributedthe central goal. After which I discuss provenance requirements for data reuseand integration. I further discuss how this can be used to further improveknowledge generation. The acquired knowledge could, in turn, be used to de-sign new experiments. The principles of the dry-lab cycle and how semantictechnologies can contribute to establish these cycles are discussed in chapter11. Finally a discussion is presented on how to apply these principles to im-prove the creation and usability of GEM’s.</p
    corecore