5,405 research outputs found

    Exploiting Data Reliability and Fuzzy Clustering for Journal Ranking

    Get PDF
    This is the author accepted manuscript. The final version is available from IEEE Computational Intelligence Society via http://dx.doi.org/10.1109/TFUZZ.2016.2612265Journal impact indicators are widely accepted as possible measurements of academic journal quality. However, much debate has recently surrounded their use, and alternative journal impact evaluation techniques are desirable. Aggregation of multiple indicators offers a promising method to produce a more robust ranking result, avoiding the possible bias caused by the use of a single impact indicator. In this paper, fuzzy aggregation and fuzzy clustering, especially the Ordered Weighted Averaging (OWA) operators are exploited to aggregate the quality scores of academic journals that are obtained from different impact indicators. Also, a novel method for linguistic term-based fuzzy cluster grouping is proposed to rank academic journals. The work allows for the construction of distinctive fuzzy clusters of academic journals on the basis of their performance with respect to different journal impact indicators, which may be subsequently combined via the use of the OWA operators. Journals are ranked in relation to their memberships in the resulting combined fuzzy clusters. In particular, the nearest-neighbour guided aggregation operators are adopted to characterise the reliability of the indicators, and the fuzzy clustering mechanism is utilised to enhance the interpretability of the underlying ranking procedure. The ranking results of academic journals from six subjects are systematically compared with the outlet ranking used by the Excellence in Research for Australia (ERA), demonstrating the significant potential of the proposed approach.publishersversionPeer reviewe

    Exploiting Reliability-Guided Aggregation for the Assessment of Curvilinear Structure Tortuosity

    Get PDF
    The study on tortuosity of curvilinear structures in medical images has been significant in support of the examination and diagnosis for a number of diseases. To avoid the bias that may arise from using one particular tortuosity measurement, the simultaneous use of multiple measurements may offer a promising approach to produce a more robust overall assessment. As such, this paper proposes a data-driven approach for the automated grading of curvilinear structures’ tortuosity, where multiple morphological measurements are aggregated on the basis of reliability to form a robust overall assessment. The proposed pipeline starts dealing with the imprecision and uncertainty inherently embedded in empirical tortuosity grades, whereby a fuzzy clustering method is applied on each available measurement. The reliability of each measurement is then assessed following a nearest neighbour guided approach before the final aggregation is made. Experimental results on two corneal nerve and one retinal vessel data sets demonstrate the superior performance of the proposed method over those where measurements are used independently or aggregated using conventional averaging operators

    Combining Multiple Clusterings via Crowd Agreement Estimation and Multi-Granularity Link Analysis

    Full text link
    The clustering ensemble technique aims to combine multiple clusterings into a probably better and more robust clustering and has been receiving an increasing attention in recent years. There are mainly two aspects of limitations in the existing clustering ensemble approaches. Firstly, many approaches lack the ability to weight the base clusterings without access to the original data and can be affected significantly by the low-quality, or even ill clusterings. Secondly, they generally focus on the instance level or cluster level in the ensemble system and fail to integrate multi-granularity cues into a unified model. To address these two limitations, this paper proposes to solve the clustering ensemble problem via crowd agreement estimation and multi-granularity link analysis. We present the normalized crowd agreement index (NCAI) to evaluate the quality of base clusterings in an unsupervised manner and thus weight the base clusterings in accordance with their clustering validity. To explore the relationship between clusters, the source aware connected triple (SACT) similarity is introduced with regard to their common neighbors and the source reliability. Based on NCAI and multi-granularity information collected among base clusterings, clusters, and data instances, we further propose two novel consensus functions, termed weighted evidence accumulation clustering (WEAC) and graph partitioning with multi-granularity link analysis (GP-MGLA) respectively. The experiments are conducted on eight real-world datasets. The experimental results demonstrate the effectiveness and robustness of the proposed methods.Comment: The MATLAB source code of this work is available at: https://www.researchgate.net/publication/28197031
    • …
    corecore