30 research outputs found

    Assessing and Improving Industrial Software Processes

    Get PDF
    Software process is a complex phenomenon that involves a multitude of different artifacts, human actors with different roles, activities to be performed in order to produce a software product. Even though the research community is devoting a great effort in proposing solutions aimed at improving software process, several issues are still open. In this Thesis work I propose different solutions for assessing and improving software processes carried out in real industrial contexts. More in detail, I proposed a solution, based on ALM and MDE, for supporting Gap Analysis processes for assessing if a software process is carried out in accordance with Standards or Evaluation Framework. Then, I focused on a solution based on tool integration for the management of trace links among the artifacts involved in the software process. As another contribution, I proposed a Reverse engineering process and a tool, named EXACT, for supporting the analysis and comprehension of spreadsheet based artifacts involved in software development processes. Finally, I realized a semi-automatic approach, named AutoMative, for supporting the introduction in real Industrial software processes of SPL for managing the variability of the software products to be developed. Case studies conducted in real industrial settings showed the feasibility and the positive impact of the proposed solutions on real industrial software processes

    Industrialising Software Development in Systems Integration

    No full text
    Compared to other disciplines, software engineering as of today is still dependent on craftsmanship of highly-skilled workers. However, with constantly increasing complexity and efforts, existing software engineering approaches appear more and more inefficient. A paradigm shift towards industrial production methods seems inevitable. Recent advances in academia and practice have lead to the availability of industrial key principles in software development as well. Specialization is represented in software product lines, standardization and systematic reuse are available with component-based development, and automation has become accessible through model-driven engineering. While each of the above is well researched in theory, only few cases of successful implementation in the industry are known. This becomes even more evident in specialized areas of software engineering such as systems integration. Today’s IT systems need to quickly adapt to new business requirements due to mergers and acquisitions and cooperations between enterprises. This certainly leads to integration efforts, i.e. joining different subsystems into a cohesive whole in order to provide new functionality. In such an environment. the application of industrial methods for software development seems even more important. Unfortunately, software development in this field is a highly complex and heterogeneous undertaking, as IT environments differ from customer to customer. In such settings, existing industrialization concepts would never break even due to one-time projects and thus insufficient economies of scale and scope. This present thesis, therefore, describes a novel approach for a more efficient implementation of prior key principles while considering the characteristics of software development for systems integration. After identifying the characteristics of the field and their affects on currently-known industrialization concepts, an organizational model for industrialized systems integration has thus been developed. It takes software product lines and adapts them in a way feasible for a systems integrator active in several business domains. The result is a three-tiered model consolidating recurring activities and reducing the efforts for individual product lines. For the implementation of component-based development, the present thesis assesses current component approaches and applies an integration metamodel to the most suitable one. This ensures a common understanding of systems integration across different product lines and thus alleviates component reuse, even across product line boundaries. The approach is furthermore aligned with the organizational model to depict in which way component-based development may be applied in industrialized systems integration. Automating software development in systems integration with model-driven engineering was found to be insufficient in its current state. The reason herefore lies in insufficient tool chains and a lack of modelling standards. As an alternative, an XML-based configuration of products within a software product line has been developed. It models a product line and its products with the help of a domain-specific language and utilizes stylesheet transformations to generate compliable artefacts. The approach has been tested for its feasibility within an exemplarily implementation following a real-world scenario. As not all aspects of industrialized systems integration could be simulated in a laboratory environment, the concept was furthermore validated during several expert interviews with industry representatives. Here, it was also possible to assess cultural and economic aspects. The thesis concludes with a detailed summary of the contributions to the field and suggests further areas of research in the context of industrialized systems integration

    Value Loss of Activities Propelled by Digital Transformation: Theoretical Evaluation and Empirical Modelling to Identify Efficiency Potentials to Maximize Value in the Field of Marketing & Sales.

    Get PDF
    Digital transformation of firms and the adoption of digital technologies is progressing inexorably. Decision-makers are preoccupied with the endeavor to identify the potentials of existing as well as newly emerging technologies and underutilize the entailed profits. This research study proposes a newly developed conceptualization and model to compute efficiency potentials in the field of marketing and sales, a business function with an intense consumer focus. While this conjoint business unit mainly fosters and propels the performance measure of effectiveness, the full exploitation of internal workforce efficiency stays neglected and barely treated by practice and science. By employing expert interviews with managers in this field, a tailored efficiency determination model is created with in total eight efficiency potentials allocated to three digital technology effects, acceleration, automation, and outsourcing. The efficiency coefficient of time weights the human labor input while the additive connection with digital technologies as input factor engenders either a complementary, substitutional, or no effect. With a sequential mixed-methods research approach, a further quantitative study with 251 employees in the field of marketing and sales uses the qualitative model to determine the efficiency potential based on individual task assessments, including the identification of task values. While distinguishing between office and customer interaction-related work, the study finds that 45 percent of the working time underlies an efficiency potential by utilizing the ONET database, which contains 214 individual tasks in the career cluster marketing and professional sales.Administración y Dirección de Empresa

    Consolidation of Customized Product Copies into Software Product Lines

    Get PDF
    Copy-based customization is a widespread technique to serve individual customer needs with existing software solutions. To cope with long term disadvantages resulting from this practice, this dissertation developed an approach to support the consolidation of such copies into a Software Product Line with a future-compliant product base providing managed variability

    Consolidation of Customized Product Copies into Software Product Lines

    Get PDF
    In software development, project constraints lead to customer-specific variants by copying and adapting the product. During this process, modifications are scattered all over the code. Although this is flexible and efficient in the short term, a Software Product Line (SPL) offers better results in the long term, regarding cost reduction, time-to-market, and quality attributes. This book presents a novel approach named SPLevo, which consolidates customized product copies into an SPL

    Consolidation of Customized Product Copies into Software Product Lines

    Get PDF
    In software development, project constraints lead to customer-specific variants by copying and adapting the product. During this process, modifications are scattered all over the code. Although this is flexible and efficient in the short term, a Software Product Line (SPL) offers better results in the long term, regarding cost reduction, time-to-market, and quality attributes. This book presents a novel approach named SPLevo, which consolidates customized product copies into an SPL

    Model driven design and data integration in semantic web information systems

    Get PDF
    The Web is quickly evolving in many ways. It has evolved from a Web of documents into a Web of applications in which a growing number of designers offer new and interactive Web applications with people all over the world. However, application design and implementation remain complex, error-prone and laborious. In parallel there is also an evolution from a Web of documents into a Web of `knowledge' as a growing number of data owners are sharing their data sources with a growing audience. This brings the potential new applications for these data sources, including scenarios in which these datasets are reused and integrated with other existing and new data sources. However, the heterogeneity of these data sources in syntax, semantics and structure represents a great challenge for application designers. The Semantic Web is a collection of standards and technologies that offer solutions for at least the syntactic and some structural issues. If offers semantic freedom and flexibility, but this leaves the issue of semantic interoperability. In this thesis we present Hera-S, an evolution of the Model Driven Web Engineering (MDWE) method Hera. MDWEs allow designers to create data centric applications using models instead of programming. Hera-S especially targets Semantic Web sources and provides a flexible method for designing personalized adaptive Web applications. Hera-S defines several models that together define the target Web application. Moreover we implemented a framework called Hydragen, which is able to execute the Hera-S models to run the desired Web application. Hera-S' core is the Application Model (AM) in which the main logic of the application is defined, i.e. defining the groups of data elements that form logical units or subunits, the personalization conditions, and the relationships between the units. Hera-S also uses a so-called Domain Model (DM) that describes the content and its structure. However, this DM is not Hera-S specific, but instead allows any Semantic Web source representation as its DM, as long as its content can be queried by the standardized Semantic Web query language SPARQL. The same holds for the User Model (UM). The UM can be used for personalization conditions, but also as a source of user-related content if necessary. In fact, the difference between DM and UM is conceptual as their implementation within Hydragen is the same. Hera-S also defines a presentation model (PM) which defines presentation details of elements like order and style. In order to help designers with building their Web applications we have introduced a toolset, Hera Studio, which allows to build the different models graphically. Hera Studio also provides some additional functionality like model checking and deployment of the models in Hydragen. Both Hera-S and its implementation Hydragen are designed to be flexible regarding the user of models. In order to achieve this Hydragen is a stateless engine that queries for relevant information from the models at every page request. This allows the models and data to be changed in the datastore during runtime. We show that one way to exploit this flexibility is by applying aspect-orientation to the AM. Aspect-orientation allows us to dynamically inject functionality that pervades the entire application. Another way to exploit Hera-S' flexibility is in reusing specialized components, e.g. for presentation generation. We present a configuration of Hydragen in which we replace our native presentation generation functionality by the AMACONT engine. AMACONT provides more extensive multi-level presentation generation and adaptation capabilities as well aspect-orientation and a form of semantic based adaptation. Hera-S was designed to allow the (re-)use of any (Semantic) Web datasource. It even opens up the possibility for data integration at the back end, by using an extendible storage layer in our database of choice Sesame. However, even though theoretically possible it still leaves much of the actual data integration issue. As this is a recurring issue in many domains, a broader challenge than for Hera-S design only, we decided to look at this issue in isolation. We present a framework called Relco which provides a language to express data transformation operations as well as a collection of techniques that can be used to (semi-)automatically find relationships between concepts in different ontologies. This is done with a combination of syntactic, semantic and collaboration techniques, which together provide strong clues for which concepts are most likely related. In order to prove the applicability of Relco we explore five application scenarios in different domains for which data integration is a central aspect. This includes a cultural heritage portal, Explorer, for which data from several datasources was integrated and was made available by a mapview, a timeline and a graph view. Explorer also allows users to provide metadata for objects via a tagging mechanism. Another application is SenSee: an electronic TV-guide and recommender. TV-guide data was integrated and enriched with semantically structured data from several sources. Recommendations are computed by exploiting the underlying semantic structure. ViTa was a project in which several techniques for tagging and searching educational videos were evaluated. This includes scenarios in which user tags are related with an ontology, or other tags, using the Relco framework. The MobiLife project targeted the facilitation of a new generation of mobile applications that would use context-based personalization. This can be done using a context-based user profiling platform that can also be used for user model data exchange between mobile applications using technologies like Relco. The final application scenario that is shown is from the GRAPPLE project which targeted the integration of adaptive technology into current learning management systems. A large part of this integration is achieved by using a user modeling component framework in which any application can store user model information, but which can also be used for the exchange of user model data

    Exploiting ALM and MDE for supporting questionnaire-based gap analysis processes

    No full text
    Gap Analysis is a common approach in industry to evaluate the gaps between the implemented software processes and the requirements suggested by both Process Quality Frameworks and Standards. Gap Analysis processes are usually executed by approaches based on questionnaires that need to be crafted ad-hoc according to specific appraisal goals and submitted to the industrial personnel. The approaches used for developing, compiling and evaluating the answers given to these questionnaires do not follow well-defined methodologies or processes, and lack of adequate tool support. In this paper we aim at understanding the main issues affecting Questionnaire-based Gap Analysis processes in industrial practices. Moreover, we evaluate the feasibility of adopting state-of-the-art software engineering technologies for executing such processes. We propose a novel approach based on Application Lifecycle Management for configuring and enacting Questionnaire-based Gap Analysis processes. The approach exploits Model Driven Engineering for configuring and implementing the Application Lifecycle Management system. This configuration activity is aided by a tool, named GADGET, we developed for modeling the process and automatically transforming it towards the Application Lifecycle Management technolog

    Pertanika Journal of Science & Technology

    Get PDF
    corecore