452 research outputs found

    Application of network coding in satellite broadcast and multiple access channels

    Get PDF
    Satellite broadcasting and relaying capabilities enable mobile broadcast systems over wide geographical areas, which opens large market possibilities for handheld, vehicular and fixed user terminals. The geostationary (GEO) satellite orbit is highly suited for such applications, as it spares the need for satellite terminals to track the movement of the spacecraft, with important savings in terms of complexity and cost. The large radius of the GEO orbit (more than 40000 km) has two main drawbacks. One is the large free space loss experienced by a signal traveling to or from the satellite, which limits the signal-to-noise ratio (SNR) margins in the link budget with respect to terrestrial systems. The second drawback of the GEO orbit is the large propagation delay (about 250 msec) that limits the use of feedback in both the forward (satellite to satellite terminal) and the reverse (satellite terminal to satellite) link. The limited margin protection causes loss of service availability in environments where there is no direct line of sight to the satellite, such as urban areas. The large propagation delay on its turn, together with the large terminal population size usually served by a GEO satellite, limit the use of feedback, which is at the basis of error-control. In the reverse link, especially in the case of fixed terminals, packet losses are mainly due to collisions, that severely limit the access to satellite services in case a random access scheme is adopted. The need for improvements and further understanding of these setups lead to the development of our work. In this dissertation we study the application of network coding to counteract the above mentioned channel impairments in satellite systems. The idea of using network coding stems from the fact that it allows to efficiently exploit the diversity, either temporal or spatial, present in the system. In the following we outline the original contributions included in each of the chapters of the dissertation. Chapter 3. This chapter deals with channel impairments in the forward link, and specifically with the problem of missing coverage in Urban environments for land mobile satellite (LMS) networks. By applying the Max-flow Min-cut theorem we derive a lower bound on the maximum coverage that can be achieved through cooperation. Inspired by this result, we propose a practical scheme, keeping in mind the compatibility with the DVB-SH standard. We developed a simulator in Matlab/C++ based on the physical layer abstraction and used it to test the performance gain of our scheme with a benchmark relaying scheme that does allow coding at packet level. Chapter 4. The second chapter of contributions is devoted to the information theoretical study of real-time streaming transmissions over fading channels with channel state information at the transmitter only. We introduce this new channel model and propose several transmission schemes, one of which is proved to be asymptotically optimal in terms of throughput. We also provide an upper bound on the achievable throughput for the proposed channel model and compare it numerically with the proposed schemes over a Rayleigh fading channel. Chapter 5. Chapter 5 is devoted to the study of throughput and delay in non-real-time streaming transmission over block fading channels. We derive bounds on the throughput and the delay for this channel and propose different coding techniques based on time-sharing. For each of them we carry out an analytical study of the performance. Finally, we compare numerically the performance of the proposed schemes over a Rayleigh fading channel. Chapter 6. In the last technical chapter we propose a collision resolution method for the return link based on physical layer network coding over extended Galois field (EGF). The proposed scheme extracts information from the colliding signals and achieves important gains with respect to Slotted ALOHA systems as well as with respect to other collision resolution schemes.Una de les característiques mes importants de les plataformes de comunicacions per satèl.lit és la seva capacitat de retransmetre senyals rebuts a un gran número de terminals. Això es fonamental en contextes com la difusió a terminals mòbils o la comunicació entre màquines. Al mateix temps, la disponibilitat d’un canal de retorn permet la creació de sistemes de comunicacions per satèl.lit interactius que, en principi, poden arribar a qualsevol punt del planeta. Els satèl.lits Geoestacionaris son particularment adequats per a complir amb aquesta tasca. Aquest tipus de satèl.lits manté una posició fixa respecte a la Terra, estalviant als terminals terrestres la necessitat de seguir el seu moviment en el cel. Per altra banda, la gran distància que separa la Terra dels satèl.lits Geoestacionaris introdueix grans retrassos en les comunicacions que, afegit al gran número de terminals en servei, limita l’ús de tècniques de retransmissió basades en acknowledgments en cas de pèrdua de paquets. Per tal de sol.lucionar el problema de la pèrdua de paquets, les tècniques més utilitzades son el desplegament de repetidors terrestres, anomenats gap fillers, l’ús de codis de protecció a nivell de paquet i mecanismes proactius de resolució de col.lisions en el canal de retorn. En aquesta tesi s’analitzen i s’estudien sol.lucions a problemes en la comunicació per satèl.lit tant en el canal de baixada com el de pujada. En concret, es consideren tres escenaris diferents. El primer escenari es la transmissió a grans poblacions de terminals mòbils en enorns urbans, que es veuen particularment afectats per la pèrdua de paquets degut a l’obstrucció, per part dels edificis, de la línia de visió amb el satèl.lit. La sol.lució que considerem consisteix en la utilització de la cooperació entre terminals. Una vegada obtinguda una mesura del guany que es pot assolir mitjançant cooperació en un model bàsic de xarxa, a través del teorema Max-flow Min-cut, proposem un esquema de cooperació compatible amb estàndards de comunicació existents. El segon escenari que considerem es la transmissió de vídeo, un tipus de tràfic particularment sensible a la pèrdua de paquets i retards endògens als sistemes de comunicació per satèl.lit. Considerem els casos de transmissió en temps real i en diferit, des de la perspectiva de teoria de la informació, i estudiem diferents tècniques de codificació analítica i numèrica. Un dels resultats principals obtinguts es l’extensió del límit assolible de la capacitat ergòdica del canal en cas que el transmissor rebi les dades de manera gradual, enlloc de rebre-les totes a l’inici de la transmissió. El tercer escenari que considerem es l’accés aleatori al satèl.lit. Desenvolupem un esquema de recuperació dels paquets perduts basat en la codificació de xarxa a nivell físic i en extensions a camps de Galois, amb resultats molt prometedors en termes de rendiment. També estudiem aspectes relacionats amb la implementació pràctica d’aquest esquema

    On the Diversity Order and Coding Gain of Multi-Source Multi-Relay Cooperative Wireless Networks with Binary Network Coding

    Full text link
    In this paper, a multi-source multi-relay cooperative wireless network with binary modulation and binary network coding is studied. The system model encompasses: i) a demodulate-and-forward protocol at the relays, where the received packets are forwarded regardless of their reliability; and ii) a maximum-likelihood optimum demodulator at the destination, which accounts for possible demodulations errors at the relays. An asymptotically-tight and closed-form expression of the end-to-end error probability is derived, which clearly showcases diversity order and coding gain of each source. Unlike other papers available in the literature, the proposed framework has three main distinguishable features: i) it is useful for general network topologies and arbitrary binary encoding vectors; ii) it shows how network code and two-hop forwarding protocol affect diversity order and coding gain; and ii) it accounts for realistic fading channels and demodulation errors at the relays. The framework provides three main conclusions: i) each source achieves a diversity order equal to the separation vector of the network code; ii) the coding gain of each source decreases with the number of mixed packets at the relays; and iii) if the destination cannot take into account demodulation errors at the relays, it loses approximately half of the diversity order.Comment: 35 pages, submitted as a Journal Pape

    Multidimensional Index Modulation for 5G and Beyond Wireless Networks

    Get PDF
    This study examines the flexible utilization of existing IM techniques in a comprehensive manner to satisfy the challenging and diverse requirements of 5G and beyond services. After spatial modulation (SM), which transmits information bits through antenna indices, application of IM to orthogonal frequency division multiplexing (OFDM) subcarriers has opened the door for the extension of IM into different dimensions, such as radio frequency (RF) mirrors, time slots, codes, and dispersion matrices. Recent studies have introduced the concept of multidimensional IM by various combinations of one-dimensional IM techniques to provide higher spectral efficiency (SE) and better bit error rate (BER) performance at the expense of higher transmitter (Tx) and receiver (Rx) complexity. Despite the ongoing research on the design of new IM techniques and their implementation challenges, proper use of the available IM techniques to address different requirements of 5G and beyond networks is an open research area in the literature. For this reason, we first provide the dimensional-based categorization of available IM domains and review the existing IM types regarding this categorization. Then, we develop a framework that investigates the efficient utilization of these techniques and establishes a link between the IM schemes and 5G services, namely enhanced mobile broadband (eMBB), massive machine-type communications (mMTC), and ultra-reliable low-latency communication (URLLC). Additionally, this work defines key performance indicators (KPIs) to quantify the advantages and disadvantages of IM techniques in time, frequency, space, and code dimensions. Finally, future recommendations are given regarding the design of flexible IM-based communication systems for 5G and beyond wireless networks.Comment: This work has been submitted to Proceedings of the IEEE for possible publicatio

    Generalized Adaptive Network Coding Aided Successive Relaying Based Noncoherent Cooperation

    No full text
    A generalized adaptive network coding (GANC) scheme is conceived for a multi-user, multi-relay scenario, where the multiple users transmit independent information streams to a common destination with the aid of multiple relays. The proposed GANC scheme is developed from adaptive network coded cooperation (ANCC), which aims for a high flexibility in order to: 1) allow arbitrary channel coding schemes to serve as the cross-layer network coding regime; 2) provide any arbitrary trade-off between the throughput and reliability by adjusting the ratio of the source nodes and the cooperating relay nodes. Furthermore, we incorporate the proposed GANC scheme in a novel successive relaying aided network (SRAN) in order to recover the typical 50% half-duplex relaying-induced throughput loss. However, it is unrealistic to expect that in addition to carrying out all the relaying functions, the relays could additionally estimate the source-to-relay channels. Hence noncoherent detection is employed in order to obviate the power-hungry channel estimation. Finally, we intrinsically amalgamate our GANC scheme with the joint network-channel coding (JNCC) concept into a powerful three-stage concatenated architecture relying on iterative detection, which is specifically designed for the destination node (DN). The proposed scheme is also capable of adapting to rapidly time-varying network topologies, while relying on energy-efficient detection
    corecore