2,544 research outputs found

    Temperature-Aware Design and Management for 3D Multi-Core Architectures

    Get PDF
    Vertically-integrated 3D multiprocessors systems-on-chip (3D MPSoCs) provide the means to continue integrating more functionality within a unit area while enhancing manufacturing yields and runtime performance. However, 3D MPSoCs incur amplified thermal challenges that undermine the corresponding reliability. To address these issues, several advanced cooling technologies, alongside temperature-aware design-time optimizations and run-time management schemes have been proposed. In this monograph, we provide an overall survey on the recent advances in temperature-aware 3D MPSoC considerations. We explore the recent advanced cooling strategies, thermal modeling frameworks, design-time optimizations and run-time thermal management schemes that are primarily targeted for 3D MPSoCs. Our aim of proposing this survey is to provide a global perspective, highlighting the advancements and drawbacks on the recent state-of-the-ar

    Numerical simulation of sensible and latent thermal energy storage systems

    Get PDF
    El objetivo principal de esta tesis es la resolución numérica de problemas de transferencia de calor y dinámica de fluidos y su aplicación para el estudio del comportamiento transitorio de sistemas térmicos de acumulación de energía (TES). Tres diferentes sistemas han sido considerados, cubriendo un amplio rango de condiciones de trabajo (desde muy baja de temperatura criogenica hasta muy alta temperatura en plantas CSP) y aplicaciones (desde domestica/residencial hasta energía renovables o de la industria aeroespacial). En este sentido, i) sistemas recuperadores de energía térmica para residencias en el rango de bajo a media temperatura; ii) un acumulador térmico usado un sistema de propulsión criogenica en el espacio en el rango de baja temperatura y; iii) sistema de acumulación térmica del tipo dos tanque para plantas solares de alta concentración en el rango de alta temperatura. La tesis esta dividida en cinco capítulos. El capitulo 2, esta dedicado en presentar la metodología empleada para la resolución computacional de la dinámica de fluidos y problemas de transferencia de calor en un dispositivo con almacenamiento para la recuperación de energía térmica de agua que se vierte al drenaje para viviendas residenciales. El estudio de las características del dispositivo fue realizado usando herramientas numéricas y experimentales. La simulación numérica fue realizada usando la plataforma NEST. La discretización de la ecuaciones de gobierno basadas en técnicas de volúmenes finitos. Correlaciones empíricas especiales han sido implementadas para ser usadas en la resolución numérica del flujo de fluido dentro de una tubería en espiral. Una infraestructura experimental ha sido desarrollada para el análisis del sistema. Diferentes flujos másicos y temperaturas de operación han sido estudiados. Los resultados numéricos han sidos comparados con resultados experimentales. La simulación numéricas realizadas predicen razonablemente bien el comportamiento transitorio de estos dispositivos. El capitulo 3, enfoca su atención en un prototipo de acumulador para baja temperatura usado para sistemas de propulsión criogenica en el espacio. Las simulaciones numéricas fueron realizadas usando la plataforma NEST. En este capitulo, dos modelos numéricos son adaptados, uno para resolver el flujo bifásico a través de tuberías bajo condiciones criogenicas, y otra para solucionar el material de cambio de fase usando un modelo entalpico de malla fija. El análisis numérico se basa en: i) la resolución unidimensional y transitoria de las ecuaciones gobernantes del fluido propulsor; ii) resolución multidimensional y transitoria de las ecuaciones gobernantes en la región ocupada por el material de cambio de fase, incorporando modelo de turbulencia para solucionar el fenómeno de convección que se produce; iii) los elementos solidos son modelados considerando un tratamiento multidimensional y transitorio de la ecuación de la energía. Los resultados numéricos son comparados con resultados experimentales de la literatura. La validación experimental bajo diferentes condiciones de trabajo de fluido criogenico y/o del material de cambio de fase muestra las posibilidades de este modelo para fines de optimización del diseño y de predicción. El capitulo 4, esta enfocado en el desarrollo de modelos numéricos para la simulación de sistemas de acumulación de energía térmica de dos tanques en centrales solares de alta concentración. La simulación numérica fue desarrollada dentro de la plataforma NEST, donde los diferentes elementos que componen el sistema son asociados para solucionar todo el sistema. Algunos elementos del sistema han sido especialmente desarrollados. Los modelos matemáticos consideran el comportamiento transitorio de la sal fundida, el gas de la cavidad, las paredes del tanque y sus aislantes, diferentes configuraciones de cimientos, la radiación entre la sal y las paredes del tanque en la zona de la cavidad del gasThe main objective of this thesis is the numerical resolution of heat transfer and fluid flow problems and its application to study the unsteady behaviour of thermal energy storage (TES) systems. Three different systems have been considered, covering a wide range of working conditions (from very low cryogenic temperature to very high temperature CSP plant) and applications (from domestic/residential to renewable or aerospace industry). In that sense, i) for residential heat recovery systems in the low-to-medium temperature range; ii) a thermal accumulator used in a in-space cryogenic propulsion system in the low temperature range and; iii) the two-tank thermal energy storage system in concentrating solar power (CSP) plants in the high temperature range. The thesis is divided into five chapters. Chapter 2 is devoted to present the methodology employed for the resolution of Computational Fluid Dynamics (CFD) and Heat Transfer problems in a drain water heat recovery (DWHR) storage-type unit for residential housing. The study of the performance of this device has been carried out using both numerical and experimental tools. The numerical simulation has been performed using the NEST platform, where the different elements of the DWHR storage are linked to solve the system. The discretisation of the governing equations based on finite volume techniques (FVM) is presented. Numerical techniques such as the discretisation schemes, boundary conditions implementation and solution procedure for incompressible and transient flow problems are shown. Special empirical correlations have been implemented to be used in the numerical resolution of the single-phase flow inside the coiled pipe. An experimental infrastructure has been developed to analyse the whole system. Different internal flow rates and operational temperatures have been studied. The numerical results are compared against experimental results. The numerical simulations performed predict reasonably the transient behaviour of the DWHR storage device. Chapter 3 focuses the attention on a Low Temperature Accumulator prototype used in an in-space cryogenic propulsion system. The numerical simulation has been carried out using the NEST platform, where the different elements of the thermal accumulator are linked to solve the whole system. In this chapter, two numerical models have been adapted, one used to solve the two-phase flow inside ducts working under cryogenic conditions, and another to solve the PCM using a fixed-grid enthalpy model. The numerical analysis is based on: i) a one-dimensional and transient resolution of the governing equations for the fluid flow of propellant; ii) a multi-dimensional and transient resolution of the governing equations in the region occupied by the PCM, incorporating a model for the turbulence to solve the convection phenomena involved; iii) the solid elements are modelled considering a multidimensional and transient treatment of the thermal conduction equation. The numerical results are compared against experimental results from the literature. The experimental validation under different working conditions of the cryogenic flow and/or the PCM material shows the possibilities of this model for design optimization and prediction purposes. Chapter 4 is focused on the development of a numerical model for the simulation of the two-tank thermal energy storage system in concentrating solar power (CSP) plants. The numerical simulation has been performed using the NEST platform, where the different elements of the two-tank storage are linked to solve the system. Some elements of the system have been specifically developed. The mathematical model considers the transient behaviour of the molten salt fluid, the gas ullage, the tank walls and insulation, different configuration of the foundation, radiation exchange between the salt and the tank walls in the ullage. A parametric study of the two-tank storage system has been done, in order to identifyPostprint (published version

    Numerical Investigation of Thermo-Hydrodynamics of Multiple Droplet Train Impingement for Surface Cooling

    Get PDF
    Spray cooling is a promising and predominant heat transfer mechanism for many industrial applications, including cooling of microelectronic devices. However, there are numerous parameters that influence the physical mechanisms in spray cooling. It is a cumbersome process to characterize the entire spray cooling process due to the associated complexities including the non-uniformity in droplet sizes, velocities, droplet collision and breakup, among others. In order to better understand the underlying physical mechanisms of spray cooling, an experimentally-validated well-controlled droplet train impingement cooling process was simulated using Computational Fluid Dynamics (CFD). The well-controlled multiple droplet impingements consisted of simulating mono-dispersed droplets with controlled velocities in line with the experimental conditions. Literature review reveals that the previous droplet train impingement numerical studies have mainly focused on single droplet, single stream and few double droplet train impingement cases. In the present study, hydrodynamics and heat transfer characteristics of single, double and triple droplet train impingement arrays have been investigated numerically in conjunction with the available experimental results. Numerically, ANSYS-Fluent was employed to simulate the droplet impingement process using the Volume of Fluid approach coupled with the Level Set method (CLSVOF). A structured 2D axisymmetric and 3D quarter symmetric meshes were created for simulating single stream of droplets under spreading and splashing conditions, respectively. A 3D half symmetric mesh was generated for double and triple stream impingement (triangular pattern) cases. The Dynamic Mesh Adaption technique (DMA) was also used in the simulations, which was capable of capturing the propagation of the droplet-induced crown with time dependent spatial and temporal resolutions. A good agreement was reached between experimental and numerical data in terms of droplet-induced crown diameter, number of cusps emanating from the moving crown rim, adjacent hump height and impact crater diameter. In single stream cases, the effect of Weber number on spreading to splashing transition has been characterized. The effect of spreading-splashing hydrodynamics on surface heat transfer for single stream impingement has also been investigated numerically. In double stream and triple stream cases, the influence of horizontal droplet stream spacing on adjacent hump height and impact crater hydrodynamics has been studied. In double and triple stream cases, horizontal impact spacing plays a crucial role in terms of hump formation and crater interactions. In summary, the effects of droplet Weber number, impact spacing and impingement pattern on heat transfer and hydrodynamics during droplet train impingement have been explored and elucidated

    Thermal Lattice Boltzmann Methods for the Simulation of Turbulent Flows with Conjugate Heat Transfer – Application to Refrigerated Vehicles

    Get PDF
    In dieser Arbeit wird eine thermische Lattice-Boltzmann-Methode (TLBM) für die instationäre Simulation turbulenter Strömungen mit natürlicher Konvektion und konjugierter Wärmeübertragung vorgestellt. Turbulente Strömungen mit ihren chaotischen Druck- und Geschwindigkeitsschwankungen stellen eine besondere Herausforderung für numerische Simulationen dar, wobei turbulente Strömungen, angetrieben durch thermische Auftriebskräfte, eine besonders schwierige Aufgabe darstellen. Wie in dieser Arbeit gezeigt wird, ermöglicht TLBM Large Eddy Simulationen (LES) solcher Probleme im industriellen und technischen Maßstab unter Verwendung eines Smagorinsky-Feinstruktur-Modells und unter Ausnutzung seiner intrinsischen Parallelisierbarkeit sowie der Möglichkeit, mehrere tausend Prozessorkerne zu verwenden. Die Eignung der vorliegenden Methode wird in dieser Arbeit anhand von Anwendungen zur Simulation der Innenluftströmung und der Isolationseffizienz eines Kühlwagens, des Wärmetransports im Luftspalt zwischen Rotor und Stator bei Elektromotoren, der Weiterentwicklung hocheffizienter Isolation auf der Basis von Vakuumisolationspaneelen (VIP) und Latentwärmespeichern sowie deren Anwendung in Kühlwagen gezeigt. Eine umfassende Validierung der Methode und ihrer Implementierung im Open-Source-Framework OpenLB wird durchgeführt. Gitterkonvergenz zweiter Ordnung wird gegen das analytische Porous Plate Problem demonstriert, während stabile Simulationen auch bei grober Diskretisierung mit hohen Reynolds- und Rayleigh-Zahlen erreicht werden. Eine sehr gute Übereinstimmung wird für natürliche Konvektion in einem quadratischen Hohlraum, ein bekannter Benchmark-Fall, vom laminaren zum turbulenten Regime mit 10^3 <= Ra <= 10^10 und bei Auflösungen von y+ ~ 2 gezeigt. Im ersten Teil der Ergebnisse werden Simulationen eines leeren Kühlaufbaus für einen Kühllastwagen vorgestellt. Das Strömungsfeld und der Wärmeübergang innerhalb eines gegebenen Kühllastwagens zeigt eine sehr gute Übereinstimmung mit den Messergebnissen, insbesondere den experimentellen Daten für ein Kühlfahrzeug bei Re ~ 53000 an vier charakteristischen Geschwindigkeits- und 13 Temperaturpositionen im Lastwagen. Die Wärmeübertragung durch die Wände wird in den Simulationen durch konjugierte Wärmeübertragung aufgelöst. Dies ermöglicht nun die präzise Vorhersage von Wärmeströmen nahe von Nusselt-Korrelationen für den gegebenen Aufbau, aber - im Gegensatz zu gewöhnlichen Nusselt-Korrelationen - wird der Wärmestrom in der Simulation räumlich aufgelöst. Im zweiten Teil der Ergebnisse wird die Strömung und der Wärmeübergang in einem Ringspalt mit innen rotierendem Zylinder untersucht. Die besondere Herausforderung bei der Simulation dieser Taylor-Couette-Strömung ist die Bildung von Taylor-Wirbeln, die durch ihre Rotation senkrecht zur Hauptströmungsrichtung den entsprechenden Wärmeübergang deutlich erhöhen. Detaillierte instationäre Simulationen werden über einen weiten Drehzahlbereich von fast schleichender Strömungen bis hin zum Auftreten von Taylor-Wirbeln durchgeführt. Es wird eine gute Übereinstimmung mit bisherigen Ergebnissen für die Strömungsstrukturen und die Verbesserung des Wärmeübergangs durch Taylor-Wirbel festgestellt. Insbesondere wird die vorliegende Methode mit Messungen, einer Korrelation und Simulationen unter Verwendung des Scherspannungstransport-Turbulenzmodells (SST) verglichen. Besonderes Augenmerk wird auf die Vorhersage der kritischen Taylor-Zahl gelegt. Während direkte numerische Simulationen (DNS) mit LBM die kritische Taylor-Zahl aus den Experimenten nahezu identisch vorhersagen, wird sie von LBM-LES leicht und vom SST-Modell weiter überschätzt, was auf die übermäßig dissipative Natur der Turbulenzmodelle für die Transition zurückzuführen ist. Im dritten Teil der Ergebnisse werden innovative Konzepte für verbesserte, nachhaltigere Kühlfahrzeuge numerisch untersucht. Um den Kraftstoffverbrauch und die damit verbundenen Emissionen zu reduzieren, werden zwei Ansätze als vielversprechend angesehen: (a) der Einbau von Vakuum-Isolationspaneelen (VIP) in die Wände des Kühlkoffers und (b) die Einführung eines Latentwärmespeichers (LHS) zum Austausch der kraftstoffbetriebenen Klimaanlage (AC). Die Verwendung des vorliegenden TLBM erlaubt in den Simulationen die Auflösung der durch die AC und die natürliche Konvektion induzierten turbulenten Luftströmung, des Wärmeflusses innerhalb der Isolierwände und der tiefgefrorenen Ladung. Dies liefert neue Erkenntnisse über den Einfluss der Konzepte auf die Wärmeübertragung in verschiedenen Kühlaufbauten. Die Simulationen zeigen einen stark reduzierten und homogenisierten einströmenden Wärmestrom für das kombinierte PUR- und VIP-Isoliermaterial im Vergleich zu einer reinen PUR-Isolierung. Die Dämmung des Kühlaufbaus mit VIPs halbiert daher die erforderliche Kühlenergie. Dies ermöglicht den Ersatz der AC durch einen LHS in Dachnähe und ein zusätzliches Lüftungssystem mit deutlich geringerer Gesamtleistung. Unter Berücksichtigung der Temperaturhomogenität von Tiefkühlprodukten wird eine leichte Umströmung des Kühlgutes als notwendig erachtet. Die maximal zulässige Ausfallzeit der AC wird in den Simulationen mit jeweils ca. 3,3 min (PUR), 8 min (PUR+VIP) und 11 min (PUR+VIP+LHS) ermittelt. Im vierten Teil der Ergebnisse wird eine LBM zur Simulation des Schmelzens und des konjugierten Wärmeübergangs auf der Basis des Transports der Gesamtenthalpie vorgestellt, welche bei Validierung gegen die analytische Lösung des zeitabhängigen Stefan-Problems präzise Ergebnisse liefert. Die in dieser Arbeit entwickelte Methode zeigt geringe Grenzflächendiffusion für einen weiten Bereich von Relaxationszeiten und Stefan-Zahlen. Weiterhin wird eine enge Übereinstimmung für das Schmelzen von Gallium einschließlich der natürlichen Konvektion in 2D und 3D mit Messungen und Simulationen mit unterschiedlichen Ansätzen gezeigt. Das Modell wird ferner auf das Schmelzen von Paraffin in zwei komplexen Metallschaumgeometrien angewendet. Es wird eine Voxel-basierte parallele Vernetzung vorgestellt, die eine schnelle und automatisierte Verarbeitung der komplexen Geometrie in wenigen Minuten ermöglicht. Die Simulationen erfassen erfolgreich den materialübergreifenden Wärmetransfer in 3D, wobei die Wärmeleitfähigkeit des Schaums mehr als 1000-mal größer als die des Paraffins ist. Die Form der Schmelzfront und der Einfluss der spezifischen Oberfläche der verschiedenen Metallschäume stehen in enger Übereinstimmung mit früheren Simulationen

    Convex-Based Thermal Management for 3D MPSoCs Using DVFS and Variable-Flow Liquid Cooling

    Get PDF
    In this work, we propose a novel online thermal management approach based on model predictive control for 3D multi-processors system on chip (MPSoCs) using microfluidic cooling. The controller uses dynamic voltage and frequency scaling (DVFS) for the computational cores and adjusts the liquid flow rate to meet the desired performance requirements and to minimize the overall MPSoC energy consumption (MPSoC power consumption+cooling power consumption). Our experimental results illustrate that our policy satisfies performance requirements and maintains the temperature below the specified threshold, while reducing cooling energy by up to 50% compared with traditional state-of-the-art liquid cooling techniques. The proposed policy also keeps the thermal profile up to 18°C lower compared with state of the art 3D thermal management using variable-flow liquid cooling

    CoMeT: An Integrated Interval Thermal Simulation Toolchain for 2D, 2.5 D, and 3D Processor-Memory Systems

    Get PDF
    Processing cores and the accompanying main memory working in tandem enable the modern processors. Dissipating heat produced from computation, memory access remains a significant problem for processors. Therefore, processor thermal management continues to be an active research topic. Most thermal management research takes place using simulations, given the challenges of measuring temperature in real processors. Since core and memory are fabricated on separate packages in most existing processors, with the memory having lower power densities, thermal management research in processors has primarily focused on the cores. Memory bandwidth limitations associated with 2D processors lead to high-density 2.5D and 3D packaging technology. 2.5D packaging places cores and memory on the same package. 3D packaging technology takes it further by stacking layers of memory on the top of cores themselves. Such packagings significantly increase the power density, making processors prone to heating. Therefore, mitigating thermal issues in high-density processors (packaged with stacked memory) becomes an even more pressing problem. However, given the lack of thermal modeling for memories in existing interval thermal simulation toolchains, they are unsuitable for studying thermal management for high-density processors. To address this issue, we present CoMeT, the first integrated Core and Memory interval Thermal simulation toolchain. CoMeT comprehensively supports thermal simulation of high- and low-density processors corresponding to four different core-memory configurations - off-chip DDR memory, off-chip 3D memory, 2.5D, and 3D. CoMeT supports several novel features that facilitate overlying system research. Compared to an equivalent state-of-the-art core-only toolchain, CoMeT adds only a ~5% simulation-time overhead. The source code of CoMeT has been made open for public use under the MIT license.Comment: https://github.com/marg-tools/CoMe

    Hierarchical Thermal Management Policy for High-Performance 3D Systems with Liquid Cooling

    Get PDF
    3-Dimensional integrated circuits and systems are expected to be present in electronic products in the short term. We consider specifically 3-D multi-processor systems-onchip (MPSoCs), realized by stacking silicon CMOS chips and interconnecting them by means of through-silicon vias (TSVs). Because of the high power density of devices and interconnect in the 3D stack, thermal issues pose critical challenges, such as hot-spot avoidance and thermal gradient reduction. Thermal management is achieved by a combination of active control of on-chip switching rates as well as active interlayer cooling with pressurized fluids. In this paper, we propose a novel online thermal management policy for high-performance 3D systems with liquid cooling. Our proposed controller uses a hierarchical approach with a global controller regulating the active cooling and local controllers (on each layer) performing dynamic voltage and frequency scaling (DVFS) and interacting with the global controller. Then, the online control is achieved by policies that are computed off-line by solving an optimization problem that considers the thermal profile of 3D-MPSoCs, its evolution over time and current time-varying workload requirements. The proposed hierarchical scheme is scalable to complex (and heterogeneous) 3D chip stacks. We perform experiments on a 3D-MPSoC case study with different interlayer cooling structures, using benchmarks ranging from web-accessing to playing multimedia. Results show significant advantages in terms of energy savings that reaches values up to 50% versus state-of-the-art thermal control techniques for liquid cooling, and thermal balance with differences of less than 10oC per layer

    On Turbulence and its Effects on Aerodynamics of Flow through Turbine Stages

    Get PDF
    In reality, the flows encountered in turbines are highly three‐dimensional, viscous, turbulent, and often transonic. These complex flows will not yield to understanding or prediction of their behavior without the application of contemporary and strong modeling techniques, together with an adequate turbulence model, to reveal effects of turbulence phenomenon and its impact on flow past turbine blades. The discussion primarily targets the turbulence features and their impact on fluid dynamics; streaming of blades, and efficiency performance. Turbulence as a phenomenon, turbulence effects and the transition onset in turbine stages are discussed. Flow parameters distribution past turbine stages, approaches to turbulence modeling, and how turbulent effects change efficiency and require an innovative design, among others are presented. Furthermore, a comparison study regarding the application and availability of various turbulence models is fulfilled, showing that every aerodynamic effect, encountered of flow pass turbine blades can be predicted via different model. This work could be very helpful for researchers and engineers working on prediction of transition onset, turbulence effects, and their impact on the overall turbine performance
    corecore