47 research outputs found

    Multi-patch discontinuous Galerkin isogeometric analysis for wave propagation: explicit time-stepping and efficient mass matrix inversion

    Full text link
    We present a class of spline finite element methods for time-domain wave propagation which are particularly amenable to explicit time-stepping. The proposed methods utilize a discontinuous Galerkin discretization to enforce continuity of the solution field across geometric patches in a multi-patch setting, which yields a mass matrix with convenient block diagonal structure. Over each patch, we show how to accurately and efficiently invert mass matrices in the presence of curved geometries by using a weight-adjusted approximation of the mass matrix inverse. This approximation restores a tensor product structure while retaining provable high order accuracy and semi-discrete energy stability. We also estimate the maximum stable timestep for spline-based finite elements and show that the use of spline spaces result in less stringent CFL restrictions than equivalent piecewise continuous or discontinuous finite element spaces. Finally, we explore the use of optimal knot vectors based on L2 n-widths. We show how the use of optimal knot vectors can improve both approximation properties and the maximum stable timestep, and present a simple heuristic method for approximating optimal knot positions. Numerical experiments confirm the accuracy and stability of the proposed methods

    Optimal trace inequality constants for interior penalty discontinuous Galerkin discretisations of elliptic operators using arbitrary elements with non-constant Jacobians

    Get PDF
    In this paper, a new method to numerically calculate the trace inequality constants, which arise in the calculation of penalty parameters for interior penalty discretisations of elliptic operators, is presented. These constants are provably optimal for the inequality of interest. As their calculation is based on the solution of a generalised eigenvalue problem involving the volumetric and face stiffness matrices, the method is applicable to any element type for which these matrices can be calculated, including standard finite elements and the non-uniform rational B-splines of isogeometric analysis. In particular, the presented method does not require the Jacobian of the element to be constant, and so can be applied to a much wider variety of element shapes than are currently available in the literature. Numerical results are presented for a variety of finite element and isogeometric cases. When the Jacobian is constant, it is demonstrated that the new method produces lower penalty parameters than existing methods in the literature in all cases, which translates directly into savings in the solution time of the resulting linear system. When the Jacobian is not constant, it is shown that the naive application of existing approaches can result in penalty parameters that do not guarantee coercivity of the bilinear form, and by extension, the stability of the solution. The method of manufactured solutions is applied to a model reaction-diffusion equation with a range of parameters, and it is found that using penalty parameters based on the new trace inequality constants result in better conditioned linear systems, which can be solved approximately 11% faster than those produced by the methods from the literature

    Space-Time Isogeometric Analysis of Parabolic Evolution Equations

    Full text link
    We present and analyze a new stable space-time Isogeometric Analysis (IgA) method for the numerical solution of parabolic evolution equations in fixed and moving spatial computational domains. The discrete bilinear form is elliptic on the IgA space with respect to a discrete energy norm. This property together with a corresponding boundedness property, consistency and approximation results for the IgA spaces yields an a priori discretization error estimate with respect to the discrete norm. The theoretical results are confirmed by several numerical experiments with low- and high-order IgA spaces

    Condition number analysis and preconditioning of the finite cell method

    Get PDF
    The (Isogeometric) Finite Cell Method - in which a domain is immersed in a structured background mesh - suffers from conditioning problems when cells with small volume fractions occur. In this contribution, we establish a rigorous scaling relation between the condition number of (I)FCM system matrices and the smallest cell volume fraction. Ill-conditioning stems either from basis functions being small on cells with small volume fractions, or from basis functions being nearly linearly dependent on such cells. Based on these two sources of ill-conditioning, an algebraic preconditioning technique is developed, which is referred to as Symmetric Incomplete Permuted Inverse Cholesky (SIPIC). A detailed numerical investigation of the effectivity of the SIPIC preconditioner in improving (I)FCM condition numbers and in improving the convergence speed and accuracy of iterative solvers is presented for the Poisson problem and for two- and three-dimensional problems in linear elasticity, in which Nitche's method is applied in either the normal or tangential direction. The accuracy of the preconditioned iterative solver enables mesh convergence studies of the finite cell method
    corecore