102 research outputs found

    Lazy Probabilistic Model Checking without Determinisation

    Get PDF
    The bottleneck in the quantitative analysis of Markov chains and Markov decision processes against specifications given in LTL or as some form of nondeterministic B\"uchi automata is the inclusion of a determinisation step of the automaton under consideration. In this paper, we show that full determinisation can be avoided: subset and breakpoint constructions suffice. We have implemented our approach---both explicit and symbolic versions---in a prototype tool. Our experiments show that our prototype can compete with mature tools like PRISM.Comment: 38 pages. Updated version for introducing the following changes: - general improvement on paper presentation; - extension of the approach to avoid full determinisation; - added proofs for such an extension; - added case studies; - updated old case studies to reflect the added extensio

    One Theorem to Rule Them All: A Unified Translation of LTL into {\omega}-Automata

    Full text link
    We present a unified translation of LTL formulas into deterministic Rabin automata, limit-deterministic B\"uchi automata, and nondeterministic B\"uchi automata. The translations yield automata of asymptotically optimal size (double or single exponential, respectively). All three translations are derived from one single Master Theorem of purely logical nature. The Master Theorem decomposes the language of a formula into a positive boolean combination of languages that can be translated into {\omega}-automata by elementary means. In particular, Safra's, ranking, and breakpoint constructions used in other translations are not needed

    Alternative Automata-based Approaches to Probabilistic Model Checking

    Get PDF
    In this thesis we focus on new methods for probabilistic model checking (PMC) with linear temporal logic (LTL). The standard approach translates an LTL formula into a deterministic ω-automaton with a double-exponential blow up. There are approaches for Markov chain analysis against LTL with exponential runtime, which motivates the search for non-deterministic automata with restricted forms of non-determinism that make them suitable for PMC. For MDPs, the approach via deterministic automata matches the double-exponential lower bound, but a practical application might benefit from approaches via non-deterministic automata. We first investigate good-for-games (GFG) automata. In GFG automata one can resolve the non-determinism for a finite prefix without knowing the infinite suffix and still obtain an accepting run for an accepted word. We explain that GFG automata are well-suited for MDP analysis on a theoretic level, but our experiments show that GFG automata cannot compete with deterministic automata. We have also researched another form of pseudo-determinism, namely unambiguity, where for every accepted word there is exactly one accepting run. We present a polynomial-time approach for PMC of Markov chains against specifications given by an unambiguous Büchi automaton (UBA). Its two key elements are the identification whether the induced probability is positive, and if so, the identification of a state set inducing probability 1. Additionally, we examine the new symbolic Muller acceptance described in the Hanoi Omega Automata Format, which we call Emerson-Lei acceptance. It is a positive Boolean formula over unconditional fairness constraints. We present a construction of small deterministic automata using Emerson-Lei acceptance. Deciding, whether an MDP has a positive maximal probability to satisfy an Emerson-Lei acceptance, is NP-complete. This fact has triggered a DPLL-based algorithm for deciding positiveness

    Constructing Deterministic ?-Automata from Examples by an Extension of the RPNI Algorithm

    Get PDF
    The RPNI algorithm (Oncina, Garcia 1992) constructs deterministic finite automata from finite sets of negative and positive example words. We propose and analyze an extension of this algorithm to deterministic ?-automata with different types of acceptance conditions. In order to obtain this generalization of RPNI, we develop algorithms for the standard acceptance conditions of ?-automata that check for a given set of example words and a deterministic transition system, whether these example words can be accepted in the transition system with a corresponding acceptance condition. Based on these algorithms, we can define the extension of RPNI to infinite words. We prove that it can learn all deterministic ?-automata with an informative right congruence in the limit with polynomial time and data. We also show that the algorithm, while it can learn some automata that do not have an informative right congruence, cannot learn deterministic ?-automata for all regular ?-languages in the limit. Finally, we also prove that active learning with membership and equivalence queries is not easier for automata with an informative right congruence than for general deterministic ?-automata

    The Infimum Problem as a Generalization of the Inclusion Problem for Automata

    Get PDF
    This thesis is concerned with automata over infinite trees. They are given a labeled infinite tree and accept or reject this tree based on its labels. A generalization of these automata with binary decisions are weighted automata. They do not just decide 'yes' or 'no', but rather compute an arbitrary value from a given algebraic structure, e.g., a semiring or a lattice. When passing from unweighted to weighted formalisms, many problems can be translated accordingly. The purpose of this work is to determine the feasibility of solving the inclusion problem for automata on infinite trees and its generalization to weighted automata, the infimum aggregation problem

    Complementation and Inclusion of Weighted Automata on Infinite Trees

    Get PDF
    Weighted automata can be seen as a natural generalization of finite state automata to more complex algebraic structures. The standard reasoning tasks for unweighted automata can also be generalized to the weighted setting. In this report we study the problems of intersection, complementation and inclusion for weighted automata on infinite trees and show that they are not harder than reasoning with unweighted automata. We also present explicit methods for solving these problems optimally

    Alternating weak automata from universal trees

    Get PDF
    An improved translation from alternating parity automata on infinite words to alternating weak automata is given. The blow-up of the number of states is related to the size of the smallest universal ordered trees and hence it is quasi-polynomial, and it is polynomial if the asymptotic number of priorities is at most logarithmic in the number of states. This is an exponential improvement on the translation of Kupferman and Vardi (2001) and a quasi-polynomial improvement on the translation of Boker and Lehtinen (2018). Any slightly better such translation would (if - like all presently known such translations - it is efficiently constructive) lead to algorithms for solving parity games that are asymptotically faster in the worst case than the current state of the art (Calude, Jain, Khoussainov, Li, and Stephan, 2017; Jurdzinski and Lazic, 2017; and Fearnley, Jain, Schewe, Stephan, and Wojtczak, 2017), and hence it would yield a significant breakthrough
    • …
    corecore