10,698 research outputs found

    A summary of the 2012 JHU CLSP Workshop on Zero Resource Speech Technologies and Models of Early Language Acquisition

    Get PDF
    We summarize the accomplishments of a multi-disciplinary workshop exploring the computational and scientific issues surrounding zero resource (unsupervised) speech technologies and related models of early language acquisition. Centered around the tasks of phonetic and lexical discovery, we consider unified evaluation metrics, present two new approaches for improving speaker independence in the absence of supervision, and evaluate the application of Bayesian word segmentation algorithms to automatic subword unit tokenizations. Finally, we present two strategies for integrating zero resource techniques into supervised settings, demonstrating the potential of unsupervised methods to improve mainstream technologies.5 page(s

    Latent Class Model with Application to Speaker Diarization

    Get PDF
    In this paper, we apply a latent class model (LCM) to the task of speaker diarization. LCM is similar to Patrick Kenny's variational Bayes (VB) method in that it uses soft information and avoids premature hard decisions in its iterations. In contrast to the VB method, which is based on a generative model, LCM provides a framework allowing both generative and discriminative models. The discriminative property is realized through the use of i-vector (Ivec), probabilistic linear discriminative analysis (PLDA), and a support vector machine (SVM) in this work. Systems denoted as LCM-Ivec-PLDA, LCM-Ivec-SVM, and LCM-Ivec-Hybrid are introduced. In addition, three further improvements are applied to enhance its performance. 1) Adding neighbor windows to extract more speaker information for each short segment. 2) Using a hidden Markov model to avoid frequent speaker change points. 3) Using an agglomerative hierarchical cluster to do initialization and present hard and soft priors, in order to overcome the problem of initial sensitivity. Experiments on the National Institute of Standards and Technology Rich Transcription 2009 speaker diarization database, under the condition of a single distant microphone, show that the diarization error rate (DER) of the proposed methods has substantial relative improvements compared with mainstream systems. Compared to the VB method, the relative improvements of LCM-Ivec-PLDA, LCM-Ivec-SVM, and LCM-Ivec-Hybrid systems are 23.5%, 27.1%, and 43.0%, respectively. Experiments on our collected database, CALLHOME97, CALLHOME00 and SRE08 short2-summed trial conditions also show that the proposed LCM-Ivec-Hybrid system has the best overall performance

    Deep clustering: Discriminative embeddings for segmentation and separation

    Full text link
    We address the problem of acoustic source separation in a deep learning framework we call "deep clustering." Rather than directly estimating signals or masking functions, we train a deep network to produce spectrogram embeddings that are discriminative for partition labels given in training data. Previous deep network approaches provide great advantages in terms of learning power and speed, but previously it has been unclear how to use them to separate signals in a class-independent way. In contrast, spectral clustering approaches are flexible with respect to the classes and number of items to be segmented, but it has been unclear how to leverage the learning power and speed of deep networks. To obtain the best of both worlds, we use an objective function that to train embeddings that yield a low-rank approximation to an ideal pairwise affinity matrix, in a class-independent way. This avoids the high cost of spectral factorization and instead produces compact clusters that are amenable to simple clustering methods. The segmentations are therefore implicitly encoded in the embeddings, and can be "decoded" by clustering. Preliminary experiments show that the proposed method can separate speech: when trained on spectrogram features containing mixtures of two speakers, and tested on mixtures of a held-out set of speakers, it can infer masking functions that improve signal quality by around 6dB. We show that the model can generalize to three-speaker mixtures despite training only on two-speaker mixtures. The framework can be used without class labels, and therefore has the potential to be trained on a diverse set of sound types, and to generalize to novel sources. We hope that future work will lead to segmentation of arbitrary sounds, with extensions to microphone array methods as well as image segmentation and other domains.Comment: Originally submitted on June 5, 201
    corecore