199 research outputs found

    Evading Subspaces Over Large Fields and Explicit List-decodable Rank-metric Codes

    Get PDF
    We construct an explicit family of linear rank-metric codes over any field F that enables efficient list decoding up to a fraction rho of errors in the rank metric with a rate of 1-rho-eps, for any desired rho in (0,1) and eps > 0. Previously, a Monte Carlo construction of such codes was known, but this is in fact the first explicit construction of positive rate rank-metric codes for list decoding beyond the unique decoding radius. Our codes are explicit subcodes of the well-known Gabidulin codes, which encode linearized polynomials of low degree via their values at a collection of linearly independent points. The subcode is picked by restricting the message polynomials to an F-subspace that evades certain structured subspaces over an extension field of F. These structured spaces arise from the linear-algebraic list decoder for Gabidulin codes due to Guruswami and Xing (STOC\u2713). Our construction is obtained by combining subspace designs constructed by Guruswami and Kopparty (FOCS\u2713) with subspace-evasive varieties due to Dvir and Lovett (STOC\u2712). We establish a similar result for subspace codes, which are a collection of subspaces, every pair of which have low-dimensional intersection, and which have received much attention recently in the context of network coding. We also give explicit subcodes of folded Reed-Solomon (RS) codes with small folding order that are list-decodable (in the Hamming metric) with optimal redundancy, motivated by the fact that list decoding RS codes reduces to list decoding such folded RS codes. However, as we only list decode a subcode of these codes, the Johnson radius continues to be the best known error fraction for list decoding RS codes

    List Decoding of Locally Repairable Codes

    Full text link
    We show that locally repairable codes (LRCs) can be list decoded efficiently beyond the Johnson radius for a large range of parameters by utilizing the local error correction capabilities. The new decoding radius is derived and the asymptotic behavior is analyzed. We give a general list decoding algorithm for LRCs that achieves this radius along with an explicit realization for a class of LRCs based on Reed-Solomon codes (Tamo-Barg LRCs). Further, a probabilistic algorithm for unique decoding of low complexity is given and its success probability analyzed

    Lossless Dimension Expanders via Linearized Polynomials and Subspace Designs

    Get PDF
    For a vector space F^n over a field F, an (eta,beta)-dimension expander of degree d is a collection of d linear maps Gamma_j : F^n -> F^n such that for every subspace U of F^n of dimension at most eta n, the image of U under all the maps, sum_{j=1}^d Gamma_j(U), has dimension at least beta dim(U). Over a finite field, a random collection of d = O(1) maps Gamma_j offers excellent "lossless" expansion whp: beta ~~ d for eta >= Omega(1/d). When it comes to a family of explicit constructions (for growing n), however, achieving even modest expansion factor beta = 1+epsilon with constant degree is a non-trivial goal. We present an explicit construction of dimension expanders over finite fields based on linearized polynomials and subspace designs, drawing inspiration from recent progress on list-decoding in the rank-metric. Our approach yields the following: - Lossless expansion over large fields; more precisely beta >= (1-epsilon)d and eta >= (1-epsilon)/d with d = O_epsilon(1), when |F| >= Omega(n). - Optimal up to constant factors expansion over fields of arbitrarily small polynomial size; more precisely beta >= Omega(delta d) and eta >= Omega(1/(delta d)) with d=O_delta(1), when |F| >= n^{delta}. Previously, an approach reducing to monotone expanders (a form of vertex expansion that is highly non-trivial to establish) gave (Omega(1),1+Omega(1))-dimension expanders of constant degree over all fields. An approach based on "rank condensing via subspace designs" led to dimension expanders with beta >rsim sqrt{d} over large fields. Ours is the first construction to achieve lossless dimension expansion, or even expansion proportional to the degree

    Improved List-Decodability of Random Linear Binary Codes

    Get PDF

    A Lower Bound on the List-Decodability of Insdel Codes

    Full text link
    For codes equipped with metrics such as Hamming metric, symbol pair metric or cover metric, the Johnson bound guarantees list-decodability of such codes. That is, the Johnson bound provides a lower bound on the list-decoding radius of a code in terms of its relative minimum distance δ\delta, list size LL and the alphabet size q.q. For study of list-decodability of codes with insertion and deletion errors (we call such codes insdel codes), it is natural to ask the open problem whether there is also a Johnson-type bound. The problem was first investigated by Wachter-Zeh and the result was amended by Hayashi and Yasunaga where a lower bound on the list-decodability for insdel codes was derived. The main purpose of this paper is to move a step further towards solving the above open problem. In this work, we provide a new lower bound for the list-decodability of an insdel code. As a consequence, we show that unlike the Johnson bound for codes under other metrics that is tight, the bound on list-decodability of insdel codes given by Hayashi and Yasunaga is not tight. Our main idea is to show that if an insdel code with a given Levenshtein distance dd is not list-decodable with list size LL, then the list decoding radius is lower bounded by a bound involving LL and dd. In other words, if the list decoding radius is less than this lower bound, the code must be list-decodable with list size LL. At the end of the paper we use such bound to provide an insdel-list-decodability bound for various well-known codes, which has not been extensively studied before
    • …
    corecore