221 research outputs found

    Some formulas for determinants of tridiagonal matrices in terms of finite generalized continued fractions: Formulas for determinants of tridiagonal matrices

    Get PDF
    In the paper, by virtue of induction and properties of determinants, the authors discover explicit and recurrent formulas of evaluations for determinants of general tridiagonal matrices in terms of finite generalized continued fractions and apply these formulas to evaluations for determinants of the Sylvester matrix and two Sylvester type matrices.In the paper, by virtue of induction and properties of determinants, the authors discover explicit and recurrent formulas of evaluations for determinants of general tridiagonal matrices in terms of finite generalized continued fractions and apply these formulas to evaluations for determinants of the Sylvester matrix and two Sylvester type matrices

    An analytical approach: Explicit inverses of periodic tridiagonal matrices

    Get PDF
    We derive an explicit formula for the inverse of a general, periodic, tridiagonal matrix. Our approach is to derive its factorization using backward continued fractions (BCF) which are an essential tool in number theory. We then use these formulae to construct an algorithm for inverting a general, periodic, tridiagonal matrix which we implement in Maple.1 Finally, we present the results of testing the efficiency of our new algorithm against another published implementation and against the library procedures available within Maple to invert a general matrix and to compute its determinant

    Evaluating Matrix Functions by Resummations on Graphs: the Method of Path-Sums

    Full text link
    We introduce the method of path-sums which is a tool for exactly evaluating a function of a discrete matrix with possibly non-commuting entries, based on the closed-form resummation of infinite families of terms in the corresponding Taylor series. If the matrix is finite, our approach yields the exact result in a finite number of steps. We achieve this by combining a mapping between matrix powers and walks on a weighted directed graph with a universal graph-theoretic result on the structure of such walks. We present path-sum expressions for a matrix raised to a complex power, the matrix exponential, matrix inverse, and matrix logarithm. We show that the quasideterminants of a matrix can be naturally formulated in terms of a path-sum, and present examples of the application of the path-sum method. We show that obtaining the inversion height of a matrix inverse and of quasideterminants is an NP-complete problem.Comment: 23 pages, light version submitted to SIAM Journal on Matrix Analysis and Applications (SIMAX). A separate paper with the graph theoretic results is available at: arXiv:1202.5523v1. Results for matrices over division rings will be published separately as wel

    Approximation of the scattering amplitude

    Get PDF
    The simultaneous solution of Ax=b and ATy=g is required in a number of situations. Darmofal and Lu have proposed a method based on the Quasi-Minimal residual algorithm (QMR). We will introduce a technique for the same purpose based on the LSQR method and show how its performance can be improved when using the Generalized LSQR method. We further show how preconditioners can be introduced to enhance the speed of convergence and discuss different preconditioners that can be used. The scattering amplitude gTx, a widely used quantity in signal processing for example, has a close connection to the above problem since x represents the solution of the forward problem and g is the right hand side of the adjoint system. We show how this quantity can be efficiently approximated using Gauss quadrature and introduce a Block-Lanczos process that approximates the scattering amplitude and which can also be used with preconditioners

    Tridiagonal and single-pair matrices and the inverse sum of two single-pair matrices

    Full text link
    A novel factorization for the sum of two single-pair matrices is established as product of lower-triangular, tridiagonal, and upper-triangular matrices, leading to semi-closed-form formulas for tridiagonal matrix inversion. Subsequent factorizations are established, leading to semi-closed-form formulas for the inverse sum of two single-pair matrices. An application to derive the symbolic inverse of a particular Gram matrix is presented.Comment: Working paper, 21 page

    The numerical solution of sparse matrix equations by fast methods and associated computational techniques

    Get PDF
    The numerical solution of sparse matrix equations by fast methods and associated computational technique

    An implicit finite-difference solution to the viscous shock layer, including the effects of radiation and strong blowing

    Get PDF
    An implicit finite-difference scheme is developed for the fully coupled solution of the viscous, radiating stagnation-streamline equations, including strong blowing. Solutions are presented for both air injection and injection of carbon-phenolic ablation products into air at conditions near the peak radiative heating point in an earth entry trajectory from interplanetary return missions. A detailed radiative-transport code that accounts for the important radiative exchange processes for gaseous mixtures in local thermodynamic and chemical equilibrium is utilized in the study. With minimum number of assumptions for the initially unknown parameters and profile distributions, convergent solutions to the full stagnation-line equations are rapidly obtained by a method of successive approximations. Damping of selected profiles is required to aid convergence of the solutions for massive blowing. It is shown that certain finite-difference approximations to the governing differential equations stabilize and improve the solutions. Detailed comparisons are made with the numerical results of previous investigations. Results of the present study indicate lower radiative heat fluxes at the wall for carbonphenolic ablation than previously predicted

    The fundamentals of adaptive grid movement

    Get PDF
    Basic grid point movement schemes are studied. The schemes are referred to as adaptive grids. Weight functions and equidistribution in one dimension are treated. The specification of coefficients in the linear weight, attraction to a given grid or a curve, and evolutionary forces are considered. Curve by curve and finite volume methods are described. The temporal coupling of partial differential equations solvers and grid generators was discussed
    corecore