2,312 research outputs found

    A New CNT-Oriented Shell Theory

    Full text link
    A theory of linearly elastic orthotropic shells is presented, with potential application to the continuous modeling of Carbon NanoTubes. Two relevant features are: the selected type of orthotropic response, which should be suitable to capture differences in chirality; the possibility of accounting for thickness changes due to changes in inter-wall separation to be expected in multi-wall CNTs. A simpler version of the theory is also proposed, in which orthotropy is preserved but thickness changes are excluded, intended for possible application to single-wall CNTs. Another feature of both versions of the present theory is boundary-value problems of torsion, axial traction, uniform inner pressure, and rim flexure, can be solved explicitly in closed form. Various directions of ongoing further research are indicated

    Unwind: Interactive Fish Straightening

    Full text link
    The ScanAllFish project is a large-scale effort to scan all the world's 33,100 known species of fishes. It has already generated thousands of volumetric CT scans of fish species which are available on open access platforms such as the Open Science Framework. To achieve a scanning rate required for a project of this magnitude, many specimens are grouped together into a single tube and scanned all at once. The resulting data contain many fish which are often bent and twisted to fit into the scanner. Our system, Unwind, is a novel interactive visualization and processing tool which extracts, unbends, and untwists volumetric images of fish with minimal user interaction. Our approach enables scientists to interactively unwarp these volumes to remove the undesired torque and bending using a piecewise-linear skeleton extracted by averaging isosurfaces of a harmonic function connecting the head and tail of each fish. The result is a volumetric dataset of a individual, straight fish in a canonical pose defined by the marine biologist expert user. We have developed Unwind in collaboration with a team of marine biologists: Our system has been deployed in their labs, and is presently being used for dataset construction, biomechanical analysis, and the generation of figures for scientific publication

    Effect of a rigid toroidal inhomogeneity on the elastic properties of a composite

    Get PDF
    An analytical solution is obtained for the problem of an infinite elastic medium containing a rigid toroidal inhomogeneity under remotely applied uniform strain. The traction on the torus surface is determined as a function of torus parameters and strain components applied at infinity. The results are utilized to calculate components of the stiffness contribution tensor of the rigid toroidal inhomogeneity that is required for calculation of the overall elastic properties of a material containing multiple toroidal inhomogeneities. The analytical results are verified by comparison with finite element model calculations

    Higher-order block-structured hex meshing of tubular structures

    Get PDF
    Numerical simulations of the cardiovascular system are growing in popularity due to the increasing availability of computational power, and their proven contribution to the understanding of pathodynamics and validation of medical devices with in-silico trials as a potential future breakthrough. Such simulations are performed on volumetric meshes reconstructed from patient-specific imaging data. These meshes are most often unstructured, and result in a brutally large amount of elements, significantly increasing the computational complexity of the simulations, whilst potentially adversely affecting their accuracy. To reduce such complexity, we introduce a new approach for fully automatic generation of higher-order, structured hexahedral meshes of tubular structures, with a focus on healthy blood vessels. The structures are modeled as skeleton-based convolution surfaces. From the same skeleton, the topology is captured by a block-structure, and the geometry by a higher-order surface mesh. Grading may be induced to obtain tailored refinement, thus resolving, e.g., boundary layers. The volumetric meshing is then performed via transfinite mappings. The resulting meshes are of arbitrary order, their elements are of good quality, while the spatial resolution may be as coarse as needed, greatly reducing computing time. Their suitability for practical applications is showcased by a simulation of physiological blood flow modelled by a generalised Newtonian fluid in the human aorta

    Collisions of particles in locally AdS spacetimes I. Local description and global examples

    Get PDF
    We investigate 3-dimensional globally hyperbolic AdS manifolds containing "particles", i.e., cone singularities along a graph Γ\Gamma. We impose physically relevant conditions on the cone singularities, e.g. positivity of mass (angle less than 2π2\pi on time-like singular segments). We construct examples of such manifolds, describe the cone singularities that can arise and the way they can interact (the local geometry near the vertices of Γ\Gamma). We then adapt to this setting some notions like global hyperbolicity which are natural for Lorentz manifolds, and construct some examples of globally hyperbolic AdS manifolds with interacting particles.Comment: This is a rewritten version of the first part of arxiv:0905.1823. That preprint was too long and contained two types of results, so we sliced it in two. This is the first part. Some sections have been completely rewritten so as to be more readable, at the cost of slightly less general statements. Others parts have been notably improved to increase readabilit

    Split noncommutativity and compactified brane solutions in matrix models

    Full text link
    Solutions of the undeformed IKKT matrix model with structure R^{3,1} x K are presented, where the noncommutativity relates the compact with the non-compact space. The extra dimensions are stabilized by angular momentum, and the scales of K are generic moduli of the solutions. Explicit solutions are given for K= T^2, K= T^4, K = S^2 x T^2 and K = S^2 x S^2. Infinite towers of Kaluza-Klein modes may arise in some directions, along with an effective UV cutoff on the non-compact space. Deformations of these solutions carry NC gauge theory coupled to (emergent) gravity. Analogous solutions of the BFSS model are also given.Comment: 24 pages. V2, V3: typos fixed. V4: minor correction
    • …
    corecore